【題目】某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,實(shí)現(xiàn)翻番,為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下統(tǒng)計(jì)圖:
建設(shè)前經(jīng)濟(jì)收入構(gòu)成比例統(tǒng)計(jì)圖 建設(shè)后經(jīng)濟(jì)收入構(gòu)成比例統(tǒng)計(jì)圖
則下面結(jié)論中不正確的是( )
A. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
B. 新農(nóng)村建設(shè)后,種植收入減少
C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半
D. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上
【答案】B
【解析】
設(shè)建設(shè)前經(jīng)濟(jì)收入為a,建設(shè)后經(jīng)濟(jì)收入為2a.通過(guò)選項(xiàng)逐一分析新農(nóng)村建設(shè)前后,經(jīng)濟(jì)收入情況,利用數(shù)據(jù)推出結(jié)果.
設(shè)建設(shè)前經(jīng)濟(jì)收入為a,建設(shè)后經(jīng)濟(jì)收入為2a.
A、建設(shè)后,養(yǎng)殖收入為30%×2a=60%a,建設(shè)前,養(yǎng)殖收入為30%a,故60%a÷30%a=2,故A項(xiàng)正確;
B、種植收入37%×2a-60%a=14%a>0,故建設(shè)后,種植收入增加,故B項(xiàng)錯(cuò)誤;
C、建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入總和為(30%+28%)×2a=58%×2a,
經(jīng)濟(jì)收入為2a,故(58%×2a)÷2a=58%>50%,故C項(xiàng)正確;
D、建設(shè)后,其他收入為5%×2a=10%a,建設(shè)前,其他收入為4%a,故10%a÷4%a=2.5>2,故D項(xiàng)正確,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于正整數(shù)m,若m=pq(p≥q>0,且p,q為整數(shù)),當(dāng)p-q最小時(shí),則稱(chēng)pq為m的“最佳分解”,并規(guī)定f(m)=(如:12的分解有12×1,6×2,4×3,其中,4×3為12的最佳分解,則f(12)=).關(guān)于f(m)有下列判斷:①f(27)=3;②f(13)=;③f(2018)=;④f(2)=f(32).其中,正確判斷的序號(hào)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠C=90°.
(1)若a:b=3:4,c=10,則a=_______,b=_______;
(2)若a=6,b=8,則斜邊c上的高h=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O與Rt△ABC的斜邊AB相切于點(diǎn)D,與直角邊AC相交于E,F(xiàn)兩點(diǎn),連結(jié)DE,已知∠B=30°,⊙O的半徑為6,弧DE的長(zhǎng)度為2π.
(1)求證:DE∥BC;
(2)若AF=CE,求線段BC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=BC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,∠BAD=45°,AD與BE交于點(diǎn)F,連接CF.
(1)求證:BF=2AE;
(2)若CD=,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:如圖1,AB∥CD,∠PAB=125°,∠PCD=135°,求∠APC的度數(shù).
小明的思路是:過(guò)P作PE∥AB,通過(guò)平行線性質(zhì)來(lái)求∠APC.
(1)按小明的思路,易求得∠APC的度數(shù)為 度。
(2)問(wèn)題遷移:如圖2,AB∥CD,點(diǎn)P在射線OM上運(yùn)動(dòng),記∠PAB=α,∠PCD=β,當(dāng)點(diǎn)P在B、D兩點(diǎn)之間運(yùn)動(dòng)時(shí),問(wèn)∠APC與α、β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,①如果點(diǎn)P運(yùn)動(dòng)到D點(diǎn)右側(cè)(不包括D點(diǎn)),則∠APC與α、β之間的數(shù)量關(guān)系為 .②如果點(diǎn)P運(yùn)動(dòng)到B點(diǎn)左側(cè)(不包括B點(diǎn)),則∠APC與α、β之間的數(shù)量關(guān)系 .(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為發(fā)展校園足球運(yùn)動(dòng),某縣城區(qū)四校決定聯(lián)合購(gòu)買(mǎi)一批足球運(yùn)動(dòng)裝備,市場(chǎng)調(diào)查發(fā)現(xiàn):甲、乙兩商場(chǎng)以同樣的價(jià)格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個(gè)足球多50元,兩套隊(duì)服與三個(gè)足球的費(fèi)用相等,經(jīng)洽談,甲商場(chǎng)優(yōu)惠方案是:每購(gòu)買(mǎi)十套隊(duì)服,送一個(gè)足球;乙商場(chǎng)優(yōu)惠方案是:若購(gòu)買(mǎi)隊(duì)服超過(guò)80套,則購(gòu)買(mǎi)足球打八折.
(1)求每套隊(duì)服和每個(gè)足球的價(jià)格是多少?
(2)若城區(qū)四校聯(lián)合購(gòu)買(mǎi)100套隊(duì)服和a個(gè)足球,請(qǐng)用含a的式子分別表示出到甲商場(chǎng)和乙商場(chǎng)購(gòu)買(mǎi)裝備所花的費(fèi)用;
(3)假如你是本次購(gòu)買(mǎi)任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場(chǎng)購(gòu)買(mǎi)比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖, AB∥CD,∠1=∠2,那么∠E和∠F相等嗎? 為什么?
【答案】相等,理由見(jiàn)解析.
【解析】試題分析:分別過(guò)E、F 點(diǎn)作CD的平行線EM、FN,根據(jù)平行線的性質(zhì)得CD∥FN∥EM∥AB,則∠3=∠1,∠4=∠5,∠1=∠6,而∠1=∠2,于是3+∠4=∠5+∠6.
試題解析:分別過(guò)E、F 點(diǎn)作CD的平行線EM、FN,如圖
∵AB∥CD,
∴CD∥FN∥EM∥AB,
∴∠3=∠2,∠4=∠5,∠1=∠6,
而∠1=∠2,
∴∠3+∠4=∠5+∠6,
即∠BEF=∠EFC.
【題型】解答題
【結(jié)束】
26
【題目】(1)填空21-20=2( ); 22-21=2( ) ;23 -22=2( )
(2)請(qǐng)用字母表示第n個(gè)等式,并驗(yàn)證你的發(fā)現(xiàn).
(3)利用(2)中你的發(fā)現(xiàn),求20+21+22+23+…+22016+22017的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△PAB中,PA=PB,M,N,K分別是PA,PB,AB上的點(diǎn),且AM=BK,BN=AK,若∠MKN=44°,則∠P的度數(shù)為( )
A.44°
B.66°
C.88°
D.92°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com