【題目】如圖22,將—矩形OABC放在直角坐際系中,O為坐標原點.點A在x軸正半軸上.點E是邊AB上的—個動點(不與點A、N重合),過點E的反比例函數(shù)的圖象與邊BC交于點F。
【1】若△OAE、△OCF的而積分別為S1、S2.且S1+S2=2,求的值:
【2】若OA=2.0C=4.問當點E運動到什么位置時,四邊形OAEF的面積最大.其最大值為多少?
【答案】
【1】∵點E、F在函數(shù)的圖象上,
∴設E(, ),F(xiàn)(,),>0,>0,
∴S1=,S2=!逽1+S2=2,∴ 。∴!4分
【2】∵四邊形OABC為矩形,OA=2,OC=4,∴設 E(,2), F(4,)!郆E=4-,BF=2-。
∴S△BEF= ,S△OCF= ,S矩形OABC=2×4=8,
∴S四邊形OAEF=S矩形OABC-S△BEF-S△OCF= 8-()-=。
∴當=4時,S四邊形OAEF=5!郃E=2。
∴當點E運動到AB的中點時,四邊形OAEF的面積最大,最大值是5!10分
【解析】(1)設E(x1,),F(xiàn)(x2,),x1>0,x2>0,根據三角形的面積公式得到S1=S2= k,利用S1+S2=2即可求出k;
(2)設E(,2),F(4,),利用S四邊形OAEF=S矩形OABC-S△BEF-S△OCF=- (k-4)2+5,根據二次函數(shù)的最值問題即可得到當k=4時,四邊形OAEF的面積有最大值,S四邊形OAEF=5,此時AE=2.
科目:初中數(shù)學 來源: 題型:
【題目】我們給出如下定義:有一組相鄰內角相等的凸四邊形叫做“等鄰角四邊形”.請解答下列問題:
(1)“梯形、長方形、正方形”中“等鄰角四邊形”是____________;
(2)如圖,在中,,點在上,且,點、分別為、的中點,連接并延長交于點.求證:四邊形是“等鄰角四邊形”;
(3)已知:在“等鄰角四邊形”中,,,,,請畫出相應圖形,并直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,D是BC的中點,以AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,交AD于點F,交AC于點G.
(1)若∠BAC=50°,求∠AEB的度數(shù);
(2)求證:∠AEB=∠ACF;
(3)試判斷線段EF、BF與AC三者之間的等量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(6分)如圖,熱氣球的探測器顯示,從熱氣球A處看一棟高樓頂部B的仰角為30°,看這棟高樓底部C的俯角為65°,熱氣球與高樓的水平距離AD為120m.求這棟高樓的高度.(結果用含非特殊角的三角函數(shù)及根式表示即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣4x+4與x軸、y軸分別交于A.B兩點,以AB為邊在第一象限內作正方形ABCD,頂點D在雙曲線y=kx-1上,將該正方形沿x軸負方向平移a個單位長度后,頂點C恰好落在雙曲線y=kx-1上,則a的值是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明同學在數(shù)學實踐課中測量路燈的高度.如圖,已知他的目高為1.5米,他先站在處看路燈頂端的仰角為,向前走3米后站在處,此時看燈頂端的仰角為(),則燈頂端到地面的距離約為( )
A.3.2米B.4.1米C.4.7米D.5.4米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形的邊長為,在正方形外,,過作于,直線,交于點,直線交直線于點,則下列結論正確的是( )
①;②;③;
④若,則
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一張長方形紙片ABCD沿對角線BD對折,使得點C落在點F處,DF交AB于E,AD=8,AB=16.
(1)求證:DE=BE;
(2)求S△BEF;
(3)若M、N分別為線段CD、DB上的動點,直接寫出(NC+NM)的最小值___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2+mx+n的圖象經過點P(﹣3,1),對稱軸是直線x=﹣1.
(1)求m,n的值;
(2)x取什么值時,y隨x的增大而減小?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com