【題目】如圖,在ABCD中,BC=2AB=4,點E、F分別是BC、AD的中點.

(1)求證:△ABE≌△CDF;
(2)當四邊形AECF為菱形時,求出該菱形的面積.

【答案】
(1)證明:∵在ABCD中,AB=CD,

∴BC=AD,∠ABC=∠CDA.

又∵BE=EC= BC,AF=DF= AD,

∴BE=DF.

∴△ABE≌△CDF.


(2)解:∵四邊形AECF為菱形時,

∴AE=EC.

又∵點E是邊BC的中點,

∴BE=EC,即BE=AE.

又BC=2AB=4,

∴AB= BC=BE,

∴AB=BE=AE,即△ABE為等邊三角形,

ABCD的BC邊上的高為2×sin60°= ,

∴菱形AECF的面積為2


【解析】第(1)問要證明三角形全等,由平行四邊形的性質,很容易用SAS證全等.第(2)要求菱形的面積,在第(1)問的基礎上很快知道△ABE為等邊三角形.這樣菱形的高就可求了,用面積公式可求得.考查了全等三角形,四邊形的知識以及邏輯推理能力.(1)用SAS證全等;(2)若四邊形AECF為菱形,則AE=EC=BE=AB,所以△ABE為等邊三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,連接對角線AC、BD,將ABC沿BC方向平移,使點B移到點C,得到DCE.

(1)求證:ACD≌△EDC;

(2)請?zhí)骄?/span>BDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個飯店所有員工的月收入情況如下:

你認為用來描述該飯店員工的月收入水平不太恰當?shù)氖?/span>( )

A. 所有員工月收入的平均數(shù)

B. 所有員工月收入的中位數(shù)

C. 所有員工月收入的眾數(shù)

D. 所有員工月收入的中位數(shù)或眾數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,,,,,把一條長為2016個單位長度且沒有彈性的細線線的粗細忽略不計的一端固定在點A處,并按的規(guī)律繞在四邊形ABCD的邊上,則細線另一端所在位置的點的坐標是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△ABC,A,B,C的對邊分別是a,b,c,三邊分別為下列長度,判斷該三角形是不是直角三角形,并指出哪一個角是直角

(1)a=,b=2,c=;

(2)a=5,b=7,c=9;

(3)a=2,b=,c=;

(4)a=5,b=2,c=1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下條件不能判別四邊形ABCD是矩形的是(  )

A. AB=CD,AD=BC,∠A=90° B. OA=OB=OC=OD

C. AB=CD,AB∥CD,AC=BD D. AB=CD,AB∥CD,OA=OC,OB=OD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若把不等式組的解集在數(shù)軸上表示出來,則其對應的圖形為

A. 長方形 B. 線段 C. 射線 D. 直線

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OABC的邊長為2,以O為圓心,EF為直徑的半圓經過點A,連接AE,CF相交于點P,將正方形OABC從OA與OF重合的位置開始,繞著點O逆時針旋轉90°,交點P運動的路徑長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知矩形OABC中,OA=3,AB=6,以OA,OC所在的直線為坐標軸,建立如圖1的平面直角坐標系.將矩形OABC繞點O順時針方向旋轉,得到矩形ODEF,當點B在直線DE上時,設直線DE和x軸交于點P,與y軸交于點Q.

(1)求證:△BCQ≌△ODQ;
(2)求點P的坐標;
(3)若將矩形OABC向右平移(圖2),得到矩形ABCG,設矩形ABCG與矩形ODEF重疊部分的面積為S,OG=x,請直接寫出x≤3時,S與x之間的函數(shù)關系式,并且寫出自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案