【題目】如圖,已知四邊形OABC是菱形,CD⊥x軸,垂足為D,函數(shù) 的圖象經過點C,且與AB交于點E.若OD=2,則△OAE的面積為_____.
【答案】
【解析】
過E作EF垂直于x軸,由OD的長得到C的橫坐標,代入反比例解析式求出縱坐標,確定出CD的長,利用勾股定理求出OC的長,即為OA的長,設EF=AF=x,表示出E坐標,代入反比例解析式求出x的值,確定出EF的長,即可求出三角形OAE面積.
解:過點E作EF⊥x軸,交x軸于點F,
∵OD=2,即C橫坐標為2,
∴把x=2代入反比例解析式得:y=2,即C(2,2),
∴CD=OD=2,即△OCD為等腰直角三角形,
∵四邊形ABCO為菱形,
∴OC∥AB,OA=OC=2,
∴∠EAF=45°,
設EF=AF=x,則有OF=OA+AF=2+x,
∴E(2+x,x),
把E坐標代入反比例解析式得:x(2+x)=4,
解得:x=﹣(負值舍去),
則△OAE面積S=.
故答案為:
科目:初中數(shù)學 來源: 題型:
【題目】為增強學生環(huán)保意識,某中學組織全校2000名學生參加環(huán)保知識大賽,比賽成績均為整數(shù),從中抽取部分同學的成績進行統(tǒng)計,并繪制成如圖統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)若抽取的成績用扇形圖來描述,則表示“第三組(79.5~89.5)”的扇形的圓心角為多少度;
(2)若成績在90分以上(含90分)的同學可以獲獎,請估計該校約有多少名同學獲獎?
(3)某班準備從成績最好的4名同學(男、女各2名)中隨機選取2名同學去社區(qū)進行環(huán)保宣傳,則選出的同學恰好是1男1女的概率為多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“小組合作制”正在七年級如火如茶地開展,旨在培養(yǎng)七年級學生的合作學習的精神和能力,學會在合作中自主探索.數(shù)學課上,吳老師在講授“角平分線”時,設計了如下四種教學方法:①教師講授,學生練習;②學生合作交流,探索規(guī)律;③教師引導學生總結規(guī)律,學生練習;④教師引導學生總結規(guī)律,學生合作交流,吳老師將上述教學方法作為調研內容發(fā)到七年級所有同學手中要求每位同學選出自己最喜歡的一種,然后吳老師從所有調查問卷中隨機抽取了若干份調查問卷作為樣本,統(tǒng)計如下:
序號①②③④代表上述四種教學方法,圖二中,表示①部分的扇形的中心角度數(shù)為36°,請回答問題:
(1)在后來的抽樣調查中,吳老師共抽取 位學生進行調查;并將條形統(tǒng)計圖補充完整;
(2)圖二中,表示③部分的扇形的中心角為多少度?
(3)若七年級學生中選擇④種教學方法的有540人,請估計七年級總人數(shù)約為多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】雅安地震牽動著全國人民的心,某單位開展了“一方有難,八方支援”賑災捐款活動.第一天收到捐款10 000元,第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增長率相同,求捐款增長率;
(2)按照(1)中收到捐款的增長速度,第四天該單位能收到多少捐款?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,且BE=CF.連接AE,BF,AE與BF交于點G.下列結論錯誤的是( 。
A. AE=BF B. ∠DAE=∠BFC
C. ∠AEB+∠BFC=90° D. AE⊥BF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】周末,身高都為1.6米的小芳、小麗來到溪江公園,準備用她們所學的知識測算南塔的高度.如圖,小芳站在A處測得她看塔頂?shù)难鼋?/span> 為45,小麗站在B處(A、B與塔的軸心共線)測得她看塔頂?shù)难鼋?/span> 為30.她們又測出A、B兩點的距離為30米.假設她們的眼睛離頭頂都為10 cm,則可計算出塔高約為(結果精確到0.01,參考數(shù)據(jù):≈1.414,≈1.732)( ).
A.36.21米 B.37.71米 C.40.98米 D.42.48米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y= 與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C.
(1)求直線AC的解析式;
(2)如圖2,點E(a,b)是對稱軸右側拋物線上一點,過點E垂直于y軸的直線與AC交于點D(m,n).點P是x軸上的一點,點Q是該拋物線對稱軸上的一點,當a+m最大時,求點E的坐標,并直接寫出EQ+PQ+PB的最小值;
(3)如圖3,在(2)的條件下,連結OD,將△AOD沿x軸翻折得到△AOM,再將△AOM沿射線CB的方向以每秒3個單位的速度沿平移,記平移后的△AOM為△A′O'M',同時拋物線以每秒1個單位的速度沿x軸正方向平移,點B的對應點為B'.△A'B'M'能否為等腰三角形?若能,請求出所有符合條件的點M'的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F分別在BC,CD上,AE=AF,AC與EF相交于點G.下列結論:①AC垂直平分EF;②BE+DF=EF;③當∠DAF=15°時,△AEF為等邊三角形;④當∠EAF=60°時,S△ABE=S△CEF.其中正確的是( 。
A. ①③B. ②④C. ①③④D. ②③④
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com