【題目】某班10名學(xué)生校服尺寸與對應(yīng)人數(shù)如圖所示,那么這10名學(xué)生校服尺寸的中位數(shù)為_____cm.
【答案】170
【解析】
根據(jù)圖示,可得:某班10名學(xué)生校服尺寸分別是160cm、165cm、165cm、165cm、170cm、170cm、175cm、175cm、180cm、180cm,據(jù)此判斷出這10名學(xué)生校服尺寸的中位數(shù)為多少即可.
∵某班10名學(xué)生校服尺寸分別是160cm、165cm、165cm、165cm、170cm、170cm、175cm、175cm、180cm、180cm,
∴這10名學(xué)生校服尺寸的中位數(shù)為:
(170+170)÷2
=340÷2
=170(cm)
答:這10名學(xué)生校服尺寸的中位數(shù)為170cm.
故答案為:170.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點A(-4,-2)和B(a,4),直線AB交y輸于點C,連接QA、OB.
(1)求反比例函數(shù)的解析式和點B的坐標(biāo):
(2)根據(jù)圖象回答,當(dāng)x的取值在什么范圍內(nèi)時,一次函數(shù)的值大于反比例函數(shù)的值;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形OABC是菱形,CD⊥x軸,垂足為D,函數(shù) 的圖象經(jīng)過點C,且與AB交于點E.若OD=2,則△OAE的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點,其中點A的坐標(biāo)為(﹣3,0),點B的坐標(biāo)為(4,0),連接AC,BC.動點P從點A出發(fā),在線段AC上以每秒1個單位長度的速度向點C作勻速運動;同時,動點Q從點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B作勻速運動,當(dāng)其中一點到達終點時,另一點隨之停止運動,設(shè)運動時間為t秒.連接PQ.
(1)填空:b= ,c= ;
(2)在點P,Q運動過程中,△APQ可能是直角三角形嗎?請說明理由;
(3)在x軸下方,該二次函數(shù)的圖象上是否存在點M,使△PQM是以點P為直角頂點的等腰直角三角形?若存在,請求出運動時間t;若不存在,請說明理由;
(4)如圖②,點N的坐標(biāo)為(﹣,0),線段PQ的中點為H,連接NH,當(dāng)點Q關(guān)于直線NH的對稱點Q′恰好落在線段BC上時,請直接寫出點Q′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,為反比例函數(shù)圖象上的兩點,動點在軸正半軸上運動,當(dāng)線段與線段之差達到最大時,點的坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,第一象限內(nèi)的點P在直線y=x上,過點P的直線交x軸正半軸于點A,交直線y=3x于點B,點B在第一象限內(nèi).
(1)如圖1,當(dāng)∠OAB=90°時,求的值;
(2)當(dāng)點A的坐標(biāo)為(6,0),且BP=2AP時,將過點A的拋物線y=﹣x2+mx上下方平移,使它過點B,求平移的方向和距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為參加11月23日舉行的丹東市“我愛詩詞”中小學(xué)生詩詞大賽決賽,某校每班選25名同學(xué)參加預(yù)選賽,成績分別為A、B、C、D四個等級,其中相應(yīng)等級的得分依次記為10分、9分、8分、7分,學(xué)校將八年級的一班和二班的成績整理并繪制成如下統(tǒng)計圖:
根據(jù)以上提供的信息解答下列問題
(1)請補全一班競賽成績統(tǒng)計圖;
(2)請直接寫出a、b、c、d的值;
班級 | 平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) |
一班 | a= | b= | 9 |
二班 | 8.76 | c= | d= |
(3)請從平均數(shù)和中位數(shù)兩個方面對這兩個班級的成績進行分析.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,以AB為直徑的圓O交BC于點D,過點C作CF∥AB,與⊙O的切線BE交于點E,連接DE.
(1)求證:BD=CD;
(2)求證:△CAB∽△CDE;
(3)設(shè)△ABC的面積為S1,△CDE的面積為S2,直徑AB的長為x,若∠ABC=30°,S1、S2 滿足S1+S2=,試求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解初中學(xué)生每天在校體育活動的時間(單位:h),隨機調(diào)査了該校的部分初中學(xué)生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次接受調(diào)查的初中學(xué)生人數(shù)為___________,圖①中m的值為_____________;
(Ⅱ)求統(tǒng)計的這組每天在校體育活動時間數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)統(tǒng)計的這組每天在校體育活動時間的樣本數(shù)據(jù),若該校共有800名初中學(xué)生,估計該校每天在校體育活動時間大于1h的學(xué)生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com