【題目】大學(xué)畢業(yè)生小王響應(yīng)國(guó)家“自主創(chuàng)業(yè)”的號(hào)召,利用銀行小額無(wú)息貸款開辦了一家飾品店.該店購(gòu)進(jìn)一種今年新上市的飾品進(jìn)行銷售,飾品的進(jìn)價(jià)為每件40元,售價(jià)為每件60元時(shí),每月可賣出300件.市場(chǎng)調(diào)查反映:調(diào)整價(jià)格時(shí),售價(jià)每漲1元每月要少賣10件;售價(jià)每下降1元每月要多賣20件.為了獲得更大的利潤(rùn),現(xiàn)將飾品售價(jià)調(diào)整為x(元/件),每月飾品銷量為y(件),月利潤(rùn)為w(元).
(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如何確定售價(jià)才能使月利潤(rùn)最大?求最大月利潤(rùn);
(3)為了使每月利潤(rùn)不少于6000元應(yīng)如何控制售價(jià)?
【答案】(1);
(2)當(dāng)售價(jià)為65元時(shí),利潤(rùn)最大,最大利潤(rùn)為6250元;
(3)將銷售價(jià)格控制在55元到70元之間(含55元和70元)才能使每月利潤(rùn)不少于6000元.
【解析】
(1)直接根據(jù)題意售價(jià)每漲1元每月要少賣10件;售價(jià)每下降1元每月要多賣20件,進(jìn)而得出等量關(guān)系;
(2)利用每件利潤(rùn)×銷量=總利潤(rùn),進(jìn)而利用配方法求出即可;
(3)利用函數(shù)圖象結(jié)合一元二次方程的解法得出符合題意的答案.
(1)由題意得:漲價(jià)時(shí):y=300-(x-60)×10=-10x+900,
降價(jià)時(shí):y=300+(60-x) ×20=-20x+1500,
即
(2)由題意可得:,
化簡(jiǎn)得:,
即,
6125<6250,
故當(dāng)售價(jià)為65元時(shí),利潤(rùn)最大,最大利潤(rùn)為6250元;
(3)令w=6000,
即6000=﹣10(x﹣65)2+6250,6000=﹣20(x-57.5)2+6125,
解得:x1=55,x2=60,x3=70,
當(dāng)w≥6000時(shí),
知:55≤x≤70,
故將銷售價(jià)格控制在55元到70元之間(含55元和70元)才能使每月利潤(rùn)不少于6000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與x軸,y軸交于A,B兩點(diǎn),與反比例函數(shù)y=的圖象相交于C、D兩點(diǎn),分別過(guò)C、D兩點(diǎn)作y軸和x軸的垂線,垂足分別為E、F,連接CF、DE.下列四個(gè)結(jié)論:①△CEF與△DEF的面積相等;②△AOB∽△FOE;③AC=BD;④tan∠BAO=a;其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩支儀仗隊(duì)隊(duì)員的身高(單位:厘米)如下:
甲隊(duì):178,177,179,178,177,178,177,179,178,179;
乙隊(duì):178,179,176,178,180,178,176,178,177,180;
(1)甲隊(duì)隊(duì)員身高的平均數(shù)為 厘米,乙隊(duì)隊(duì)員身高的平均數(shù)為 厘米;
(2)你認(rèn)為哪支儀仗隊(duì)更為整齊?簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店銷售一種文具袋,成本為30元/件,每天的銷售量(件)與銷售單價(jià)(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天的銷量不低于240件,那么當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1,將△A1B1C1向右平移6個(gè)單位,再向上平移2個(gè)單位得到△A2B2C2.
(1)畫出△A1B1C1和△A2B2C2;
(2)△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)分別為A1、A2,請(qǐng)寫出點(diǎn)A1、A2的坐標(biāo);
(3)P(a,b)是△ABC的邊AC上一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)分別為P1,P2,請(qǐng)寫出點(diǎn)P1、P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣x與二次函數(shù)y=﹣x2+bx+c的圖象相交于原點(diǎn)O和另一點(diǎn)A(4,﹣4).
(1)求二次函數(shù)表達(dá)式;
(2)直線x=m和x=m+2分別交線段AO于C、D,交二次函數(shù)y=﹣x2+bx+c的圖象于點(diǎn)E、F,當(dāng)m為何值時(shí),四邊形CEFD是平行四邊形;
(3)在第(2)題的條件下,設(shè)CE與x軸的交點(diǎn)為M,將△COM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到△C′OM′,當(dāng)C′、M′、F三點(diǎn)第一次共線時(shí),請(qǐng)畫出圖形并直接寫出點(diǎn)C′的縱坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( 。.
A. “打開電視機(jī),正在播放《動(dòng)物世界》”是必然事件
B. 某種彩票的中獎(jiǎng)概率為,說(shuō)明每買1000張,一定有一張中獎(jiǎng)
C. 拋擲一枚質(zhì)地均勻的硬幣一次,出現(xiàn)正面朝上的概率為
D. 想了解長(zhǎng)沙市所有城鎮(zhèn)居民的人均年收入水平,宜采用抽樣調(diào)查
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是△ACD的外接圓⊙O的直徑,CD交AB于點(diǎn)F,其中AC=AD,AD的延長(zhǎng)線交過(guò)點(diǎn)B的切線BM于點(diǎn)E.
(1)求證:CD∥BM;
(2)連接OE交CD于點(diǎn)G,若DE=2,AB=4,求OG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在正方形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),過(guò)O點(diǎn)的射線OM、ON分別交AB、BC于點(diǎn)E、F,且∠EOF=90°,BO、EF交于點(diǎn)P,下列結(jié)論:
①圖形中全等的三角形只有三對(duì); ②△EOF是等腰直角三角形;③正方形ABCD的面積等于四邊形OEBF面積的4倍;④BE+BF=OA;⑤AE2+BE2=2OPOB.其中正確的個(gè)數(shù)有( 。﹤(gè).
A. 4B. 3C. 2D. 1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com