(2012•鹽城)小勇第一次拋一枚質(zhì)地均勻的硬幣時正面向上,他第二次再拋這枚硬幣時,正面向上的概率是
1
2
1
2
分析:拋一枚質(zhì)地均勻的硬幣,有兩種結(jié)果,正面或反面朝上,每種結(jié)果等可能出現(xiàn),利用概率公式即可求得答案.
解答:解:∵拋擲一枚質(zhì)地均勻的硬幣,有兩種結(jié)果:正面朝上,反面朝上,每種結(jié)果等可能出現(xiàn),
∴他第二次再拋這枚硬幣時,正面向上的概率是:
1
2

故答案為:
1
2
點評:本題主要考查了古典概率中的等可能事件的概率的求解.此題屬基礎題,注意如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=
n
m
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•鹽城二模)閱讀下列材料:
問題:如圖1,P為正方形ABCD內(nèi)一點,且PA:PB:PC=1:2:3,求∠APB的度數(shù).
小娜同學的想法是:不妨設PA=1,PB=2,PC=3,設法把PA、PB、PC相對集中,于是他將△BCP繞點B順時針旋轉(zhuǎn)90°得到△BAE(如圖2),然后連接PE,問題得以解決.
請你回答:圖2中∠APB的度數(shù)為
135°
135°

請你參考小娜同學的思路,解決下列問題:
如圖3,P是等邊三角形ABC內(nèi)一點,已知∠APB=115°,∠BPC=125°.
(1)在圖3中畫出并指明以PA、PB、PC的長度為三邊長的一個三角形(保留畫圖痕跡);
(2)求出以PA、PB、PC的長度為三邊長的三角形的各內(nèi)角的度數(shù)分別等于
60°、65°、55°
60°、65°、55°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鹽城模擬)已知二次函數(shù)的圖象(-0.7≤x≤2)如圖所示、關于該函數(shù)在所給自變量x的取值范圍內(nèi),下列說法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鹽城)如圖所示,當小華站立在鏡子EF前A處時,他看自己的腳在鏡中的像的俯角為45°.若小華向后退0.5米到B處,這時他看自己的腳在鏡中的像的俯角為30°.求小華的眼睛到地面的距離.(結(jié)果精確到0.1米,參考數(shù)據(jù):
3
≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鹽城)知識遷移
   當a>0且x>0時,因為(
x
-
a
x
)
2
≥0
,所以x-2
a
+
a
x
≥0,從而x+
a
x
2
a
(當x=
a
)是取等號).
   記函數(shù)y=x+
a
x
(a>0,x>0).由上述結(jié)論可知:當x=
a
時,該函數(shù)有最小值為2
a

直接應用
   已知函數(shù)y1=x(x>0)與函數(shù)y2=
1
x
(x>0),則當x=
1
1
時,y1+y2取得最小值為
2
2

變形應用
   已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=(x+1)2+4(x>-1),求
y2
y1
的最小值,并指出取得該最小值時相應的x的值.
實際應用
   已知某汽車的一次運輸成本包含以下三個部分,一是固定費用,共360元;二是燃油費,每千米1.6元;三是折舊費,它與路程的平方成正比,比例系數(shù)為0.001.設該汽車一次運輸?shù)穆烦虨閤千米,求當x為多少時,該汽車平均每千米的運輸成本最低?最低是多少元?

查看答案和解析>>

同步練習冊答案