(2012•鹽城)知識(shí)遷移
   當(dāng)a>0且x>0時(shí),因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">(
x
-
a
x
)
2
≥0,所以x-2
a
+
a
x
≥0,從而x+
a
x
2
a
(當(dāng)x=
a
)是取等號(hào)).
   記函數(shù)y=x+
a
x
(a>0,x>0).由上述結(jié)論可知:當(dāng)x=
a
時(shí),該函數(shù)有最小值為2
a

直接應(yīng)用
   已知函數(shù)y1=x(x>0)與函數(shù)y2=
1
x
(x>0),則當(dāng)x=
1
1
時(shí),y1+y2取得最小值為
2
2

變形應(yīng)用
   已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=(x+1)2+4(x>-1),求
y2
y1
的最小值,并指出取得該最小值時(shí)相應(yīng)的x的值.
實(shí)際應(yīng)用
   已知某汽車的一次運(yùn)輸成本包含以下三個(gè)部分,一是固定費(fèi)用,共360元;二是燃油費(fèi),每千米1.6元;三是折舊費(fèi),它與路程的平方成正比,比例系數(shù)為0.001.設(shè)該汽車一次運(yùn)輸?shù)穆烦虨閤千米,求當(dāng)x為多少時(shí),該汽車平均每千米的運(yùn)輸成本最低?最低是多少元?
分析:直接運(yùn)用:可以直接套用題意所給的結(jié)論,即可得出結(jié)果.
變形運(yùn)用:先得出
y2
y1
的表達(dá)式,然后將(x+1)看做一個(gè)整體,繼而再運(yùn)用所給結(jié)論即可.
實(shí)際運(yùn)用:設(shè)行駛x千米的費(fèi)用為y,則可表示出平均每千米的運(yùn)輸成本,利用所給的結(jié)論即可得出答案.
解答:解:直接應(yīng)用:
∵函數(shù)y=x+
a
x
(a>0,x>0),由上述結(jié)論可知:當(dāng)x=
a
時(shí),該函數(shù)有最小值為2
a

∴函數(shù)y1=x(x>0)與函數(shù)y2=
1
x
(x>0),則當(dāng)x=1時(shí),y1+y2取得最小值為2.
變形應(yīng)用
已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=(x+1)2+4(x>-1),
y2
y1
=
(x+1) 2+4
x+1
=(x+1)+
4
x+1
的最小值為:2
4
=4,
∵當(dāng)(x+1)+
4
x+1
=4時(shí),
整理得出:x2-2x+1=0,
解得:x1=x2=1,
檢驗(yàn):x=1時(shí),x+1=2≠0,
故x=1是原方程的解,
y2
y1
的最小值為4,相應(yīng)的x的值為1;
實(shí)際應(yīng)用
設(shè)行駛x千米的費(fèi)用為y,則由題意得,y=360+1.6x+0.001x2,
故平均每千米的運(yùn)輸成本為:
y
x
=0.001x+
360
x
+1.6=0.001x+
0.36
0.001x
+1.6,
由題意可得:當(dāng)0.001x=
0.36
時(shí),
y
x
取得最小,此時(shí)x=600km,
此時(shí)
y
x
≥2
0.36
+1.6=2.8,
即當(dāng)一次運(yùn)輸?shù)穆烦虨?00千米時(shí),運(yùn)輸費(fèi)用最低,最低費(fèi)用為:2.8元.
答:汽車一次運(yùn)輸?shù)穆烦虨?00千米,平均每千米的運(yùn)輸成本最低,最低是2.8元.
點(diǎn)評(píng):此題考查了二次函數(shù)的應(yīng)用及幾何不等式的知識(shí),題目出的比較新穎,解答本題的關(guān)鍵是仔細(xì)審題,理解題意所給的結(jié)論,達(dá)到學(xué)以致用的目的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•鹽城二模)閱讀下列材料:
問(wèn)題:如圖1,P為正方形ABCD內(nèi)一點(diǎn),且PA:PB:PC=1:2:3,求∠APB的度數(shù).
小娜同學(xué)的想法是:不妨設(shè)PA=1,PB=2,PC=3,設(shè)法把PA、PB、PC相對(duì)集中,于是他將△BCP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△BAE(如圖2),然后連接PE,問(wèn)題得以解決.
請(qǐng)你回答:圖2中∠APB的度數(shù)為
135°
135°

請(qǐng)你參考小娜同學(xué)的思路,解決下列問(wèn)題:
如圖3,P是等邊三角形ABC內(nèi)一點(diǎn),已知∠APB=115°,∠BPC=125°.
(1)在圖3中畫出并指明以PA、PB、PC的長(zhǎng)度為三邊長(zhǎng)的一個(gè)三角形(保留畫圖痕跡);
(2)求出以PA、PB、PC的長(zhǎng)度為三邊長(zhǎng)的三角形的各內(nèi)角的度數(shù)分別等于
60°、65°、55°
60°、65°、55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鹽城二模)如圖,在平面直角坐標(biāo)系中,已知直線AB:y=-
34
x+3分別與x軸、y軸分別交于點(diǎn)A、點(diǎn)B.動(dòng)點(diǎn)P、Q分別從O、A同時(shí)出發(fā),其中點(diǎn)P以每秒1個(gè)點(diǎn)位長(zhǎng)度的速度沿OA方向向A點(diǎn)勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后立即以原速度沿AO返向;點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從A點(diǎn)出發(fā),沿A-B-O方向向O點(diǎn)勻速運(yùn)動(dòng).當(dāng)點(diǎn)Q到達(dá)點(diǎn)O時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)求點(diǎn)A與點(diǎn)B的坐標(biāo);
(2)如圖1,在某一時(shí)刻將△APQ沿PQ翻折,使點(diǎn)A恰好落在AB邊的點(diǎn)C處,求此時(shí)△APQ的面積;
(3)若D為y軸上一點(diǎn),在點(diǎn)P從O向A運(yùn)動(dòng)的過(guò)程中,是否存在某一時(shí)刻,使得四邊形PQBD為等腰梯形?若存在,求出t的值與D點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)如圖2,在P、Q兩點(diǎn)運(yùn)動(dòng)過(guò)程中,線段PQ的垂直平分線EF交PQ于點(diǎn)E,交折線QB-BO-OP于點(diǎn)F.問(wèn):是否存在某一時(shí)刻t,使EF恰好經(jīng)過(guò)原點(diǎn)O?若存在,請(qǐng)求出所有符合條件的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鹽城)已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,…,依此類推,則a2012的值為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鹽城模擬)已知二次函數(shù)的圖象(-0.7≤x≤2)如圖所示、關(guān)于該函數(shù)在所給自變量x的取值范圍內(nèi),下列說(shuō)法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鹽城)如圖,在四邊形ABCD中,已知AB∥DC,AB=DC.在不添加任何輔助線的前提下,要想該四邊形成為矩形,只需再加上的一個(gè)條件是
∠A=90°
∠A=90°
.(填上你認(rèn)為正確的一個(gè)答案即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案