【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)的橫坐標(biāo)分別為﹣1,3,則下列結(jié)論正確的個(gè)數(shù)有( 。
①ac<0;②2a+b=0;③4a+2b+c>0;④對(duì)于任意x均有ax2+bx≥a+b.

A.1
B.2
C.3
D.4

【答案】C
【解析】解:根據(jù)圖象可得:拋物線開(kāi)口向上,則a>0.拋物線與y交與負(fù)半軸,則c<0,
故①ac<0錯(cuò)誤;
對(duì)稱軸:x=﹣>0,
∵它與x軸的兩個(gè)交點(diǎn)分別為(﹣1,0),(3,0),
∴對(duì)稱軸是x=1,
∴﹣=1,
∴b+2a=0,
故②2a+b=0正確;
把x=2代入y=ax2+bx+c=4a+2b+c,由圖象可得4a+2b+c>0,
故③4a+2b+c>0正確;
對(duì)于任意x均有ax2+bx≥a+b,
故④正確;
故選C
首先根據(jù)二次函數(shù)圖象開(kāi)口方向可得a>0,根據(jù)圖象與y軸交點(diǎn)可得c<0,再根據(jù)二次函數(shù)的對(duì)稱軸x=﹣ , 結(jié)合圖象與x軸的交點(diǎn)可得對(duì)稱軸為x=1,根據(jù)對(duì)稱軸公式結(jié)合a的取值可判定出b<0進(jìn)而解答即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,EBC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.

(1)求證:ABCF;

(2)當(dāng)BCAF滿足什么數(shù)量關(guān)系時(shí),四邊形ABFC是矩形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)口袋中有1個(gè)黑球和若干個(gè)白球,這些球除顏色外其他都相同.已知從中任意摸取一個(gè)球,摸得黑球的概率為
(1)求口袋中白球的個(gè)數(shù);
(2)如果先隨機(jī)從口袋中摸出一球,不放回,然后再摸出一球,求兩次摸出的球都是白球的概率.用列表法或畫(huà)樹(shù)狀圖法加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠一周計(jì)劃每天生產(chǎn)400輛自行車,實(shí)際生產(chǎn)量(單位:輛)分別為405,393,410,409,387,406,397.

(1)用正、負(fù)數(shù)表示實(shí)際生產(chǎn)量與計(jì)劃量的增減情況;

(2)該廠實(shí)際共生產(chǎn)多少輛自行車?平均每天生產(chǎn)多少輛自行車

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AD方向向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿著CB方向向點(diǎn)B以3cm/s的速度運(yùn)動(dòng).點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).

(1)經(jīng)過(guò)多長(zhǎng)時(shí)間,四邊形PQCD是平行四邊形?

(2)經(jīng)過(guò)多長(zhǎng)時(shí)間,四邊形PQBA是矩形?

(3)經(jīng)過(guò)多長(zhǎng)時(shí)間,當(dāng)PQ不平行于CD時(shí),有PQ=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,作ADAB交BC的延長(zhǎng)線于點(diǎn)D,作CEAC,且使AEBD,連結(jié)DE.

(1)求證:AD=CE.

(2)若DE=3,CE=4,求tanDAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AD=4,∠CAB=30°,點(diǎn)P是線段AC上的動(dòng)點(diǎn),點(diǎn)Q是線段CD上的動(dòng)點(diǎn),則AQ+QP的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解我縣1800名初中畢業(yè)生參加云南省數(shù)學(xué)學(xué)業(yè)水平考試的成績(jī)情況(得分取整數(shù)),我們隨機(jī)抽取了部分學(xué)生的數(shù)學(xué)成績(jī),將其等級(jí)情況制成不完整的統(tǒng)計(jì)表如下:

等級(jí)

A級(jí)(優(yōu)秀)
(≥108分)

B級(jí)(良好)
(≥84分且<108分)

C級(jí)(及格)
(≥72分且<84分)

D級(jí)(不及格)
(<72分)

人數(shù)

22

28

18

根據(jù)以上提供的信息解答下列問(wèn)題:
(1)若抽取的學(xué)生的數(shù)學(xué)成績(jī)的及格率(C級(jí)及其以上為及格)為77.5%,則抽取的學(xué)生數(shù)是多少人?其中成績(jī)?yōu)镃級(jí)的學(xué)生有多少人?
(2)求出D級(jí)學(xué)生的人數(shù)在扇形統(tǒng)計(jì)圖中的圓心角.
(3)請(qǐng)你估計(jì)全縣數(shù)學(xué)成績(jī)?yōu)锳級(jí)的學(xué)生總?cè)藬?shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案