【題目】如圖,平行四邊形ABCD中,AD=2AB,EBC的中點(diǎn),連結(jié)AE并延長(zhǎng)交DC的延長(zhǎng)線(xiàn)于點(diǎn)F

1)求證:DEAF;

2)若∠B=60°,DE=4,求AB的長(zhǎng),

【答案】1)見(jiàn)解析;(2

【解析】

1)先證ABEFCE,得出FC=AB,點(diǎn)EAF的中點(diǎn),并推導(dǎo)出FD=AD,得出ADF是等腰三角形,從而證明結(jié)論;

2)∠B=60°,則∠ADE=30°,在RtAED中,可求得AE的長(zhǎng),從而得出AD的長(zhǎng),最后得出AB的長(zhǎng).

1)∵點(diǎn)EBC的中點(diǎn)

BE=EC

∵四邊形ABCD是平行四邊形

ABCD,AB=CD,

∴∠B=ECF

ABEFCE

ABEFCE

AB=FC,AE=EF

AD=2AB

AD=DF

ADF是等腰三角形

DEAF

2)∵∠B=60°

∴∠ADC=60°,

∴∠ADE=30°

DE=4,

AD=

AB=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了預(yù)防疾病,某單位對(duì)辦公室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成為正比例,藥物燃燒后,yx成反比例(如圖),現(xiàn)測(cè)得藥物8分鐘燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量6毫克,請(qǐng)根據(jù)題中所提供的信息,解答下列問(wèn)題:

(1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為________,自變量x的取值范為________;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為________.

(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時(shí)員工方可進(jìn)辦公室,那么從消毒開(kāi)始,至少需要經(jīng)過(guò)________分鐘后,員工才能回到辦公室;

(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時(shí)間不低于10分鐘時(shí),才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△AOB中,AO=AB,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(22),點(diǎn)O的坐標(biāo)是(0,0),將△AOB平移得到△A′O′B′,使得點(diǎn)A′y軸上.點(diǎn)O′、B′x軸上.則點(diǎn)B'的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家電銷(xiāo)售商城電冰箱的銷(xiāo)售價(jià)為每臺(tái)2100元,空調(diào)的銷(xiāo)售價(jià)為每臺(tái)1750元,每臺(tái)電冰箱的進(jìn)價(jià)比每臺(tái)空調(diào)的進(jìn)價(jià)多400元,商城用80000元購(gòu)進(jìn)電冰箱的數(shù)量與用64000元購(gòu)進(jìn)空調(diào)的數(shù)量相等.

1)求每臺(tái)電冰箱與空調(diào)的進(jìn)價(jià)分別是多少;

2)現(xiàn)在商城準(zhǔn)備一次購(gòu)進(jìn)這兩種家電共100臺(tái),設(shè)購(gòu)進(jìn)電冰箱x臺(tái),這100臺(tái)家電的銷(xiāo)售總利潤(rùn)為y元,要求購(gòu)進(jìn)空調(diào)數(shù)量不超過(guò)電冰箱數(shù)量的2倍,總利潤(rùn)不低于13000元,請(qǐng)分析合理的方案共有多少種,并確定獲利最大的方案以及最大利潤(rùn);

3)實(shí)際進(jìn)貨時(shí),廠家對(duì)電冰箱出廠價(jià)下調(diào)k0k100)元,若商店保持這兩種家電的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)問(wèn)中條件,設(shè)計(jì)出使這100臺(tái)家電銷(xiāo)售總利潤(rùn)最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,O是斜邊AB的中點(diǎn),點(diǎn)D,E分別在直角邊ACBC上,且∠DOE=90°,DEOC于點(diǎn)P.則下列結(jié)論:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)ABC的面積等于四邊形CDOE面積的2倍;(4)OD=OE.其中正確的結(jié)論有( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】低碳環(huán)保,你我同行”.近幾年,各大城市的公共自行車(chē)給市民出行帶來(lái)了極大的方便.圖①是公共自行車(chē)的實(shí)物圖,圖②是公共自行車(chē)的車(chē)架示意圖,點(diǎn)A.D、C、E在同一條直線(xiàn)上,CD=30cm,DF=20cm,AF=25cm,F(xiàn)D⊥AE于點(diǎn)D,座桿CE=15cm,且∠EAB=75°.

(1)求AD的長(zhǎng);

(2)求點(diǎn)EAB的距離.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)ABC分別是⊙O上的點(diǎn),∠B=60°,AC=3,CD⊙O的直徑,PCD延長(zhǎng)線(xiàn)上的一點(diǎn),且AP=AC

1)求證:AP⊙O的切線(xiàn);

2)求PD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A(-1,2)關(guān)于軸的對(duì)稱(chēng)點(diǎn)坐標(biāo)是____________;點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)的坐標(biāo)是____________。點(diǎn)A關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】邊長(zhǎng)為a的等邊三角形,記為第1個(gè)等邊三角形,取其各邊的三等分點(diǎn),順次連接得到一個(gè)正六邊形,記為第1個(gè)正六邊形,取這個(gè)正六邊形不相鄰的三邊中點(diǎn),順次連接又得到一個(gè)等邊三角形,記為第2個(gè)等邊三角形,取其各邊的三等分點(diǎn),順次連接又得到一個(gè)正六邊形,記為第2個(gè)正六邊形(如圖),,按此方式依次操作,則第6個(gè)正六邊形的邊長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案