【題目】如圖(1),已知小正方形的面積為1,把它的各邊延長(zhǎng)一倍得新正方形;把正方形邊長(zhǎng)按原法延長(zhǎng)一倍得到正方形如圖(2);以此下去,則正方形的面積為_________________

【答案】3125

【解析】

根據(jù)條件計(jì)算出圖(1) 正方形A1B1C1D1的面積,同理求出正方形A2B2C2D2的面積,由此找出規(guī)律即可求出答案.

(1)中正方形ABCD的面積為1,把各邊延長(zhǎng)一倍后,每個(gè)小三角形的面積也為1,

所以正方形A1B1C1D1的面積為5,

(2)中正方形A1B1C1D1的面積為5,把各邊延長(zhǎng)一倍后,每個(gè)小三角形的面積也為5,

所以正方形A2B2C2D2的面積為52=25,

由此可得正方形A5B5C5D5的面積為55=3125

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)若⊙O的半徑為3,ED=4,EO的延長(zhǎng)線交⊙OF,連DF、AF,求△ADF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示.在△ABC中,AB=AC,點(diǎn)DBC上一點(diǎn),DEACAB于點(diǎn)E,DFABAC于點(diǎn)F,則四邊形AEDF的周長(zhǎng)等于這個(gè)三角形的(  )

A.周長(zhǎng)B.周長(zhǎng)的一半

C.兩腰長(zhǎng)和的一半D.兩腰長(zhǎng)的和

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B兩地被大山阻隔,若要從A地到B地,只能沿著如圖所示的公路先從A地到C地,再由C地到B地.現(xiàn)計(jì)劃開(kāi)鑿隧道A,B兩地直線貫通,經(jīng)測(cè)量得:CAB=30°,CBA=45°,AC=20km,求隧道開(kāi)通后與隧道開(kāi)通前相比,從A地到B地的路程將縮短多少?(結(jié)果精確到0.1km,參考數(shù)據(jù): ≈1.414, ≈1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三個(gè)頂點(diǎn)的坐標(biāo)分別為,,,以原點(diǎn)為位似中心,將縮小,使變換后得到的對(duì)應(yīng)邊的比為,則線段的中點(diǎn)變換后對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(

A. (2,) B. (-2,-) C. (2,)(-2,-) D. (8,6)(-8,-6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD為□ABCD的對(duì)角線,按要求完成下列各題.

(1)用直尺和圓規(guī)作出對(duì)角線BD的垂直平分線交AD于點(diǎn)E,交BC于點(diǎn)F,垂足為O.(保留作圖痕跡,不要求寫作法)

(2)在(1)的基礎(chǔ)上,連接BE和DF.求證:四邊形BFDE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,B+D=180°,點(diǎn)E、F分別在邊BCCD上,則當(dāng)∠EAF與∠BAD滿足  關(guān)系時(shí),仍有EF=BE+FD請(qǐng)證明你的結(jié)論.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,ADC=120°,BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AEAD,DF=401米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng).(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)ECD上,將BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)GAF上,將ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:

①∠EBG=45°;DEF∽△ABG;SABG=SFGH;AG+DF=FG.

其中正確的是__.(把所有正確結(jié)論的序號(hào)都選上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=3,連接AC,P和⊙Q分別是△ABC和△ADC的內(nèi)切圓,則PQ的長(zhǎng)是( )

A. B. 2 C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案