【題目】如圖,拋物線y=﹣x2﹣2x+3的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求點A、B、C的坐標;
(2)點M(m,0)為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,可得矩形PQNM.如圖,點P在點Q左邊,試用含m的式子表示矩形PQNM的周長;
(3)當矩形PQNM的周長最大時,m的值是多少?并求出此時的△AEM的面積;
(4)在(3)的條件下,當矩形PMNQ的周長最大時,連接DQ,過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=2DQ,求點F的坐標.
【答案】(1)A(﹣3,0),B(1,0);C(0,3) ;(2)矩形PMNQ的周長=﹣2m2﹣8m+2;(3) m=﹣2;S=;(4)F(﹣4,﹣5)或(1,0).
【解析】
(1)利用函數(shù)圖象與坐標軸的交點的求法,求出點A,B,C的坐標;
(2)先確定出拋物線對稱軸,用m表示出PM,MN即可;
(3)由(2)得到的結(jié)論判斷出矩形周長最大時,確定出m,進而求出直線AC解析式,即可;
(4)在(3)的基礎(chǔ)上,判斷出N應(yīng)與原點重合,Q點與C點重合,求出DQ=DC=,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.
(1)由拋物線y=﹣x2﹣2x+3可知,C(0,3).
令y=0,則0=﹣x2﹣2x+3,
解得,x=﹣3或x=l,
∴A(﹣3,0),B(1,0).
(2)由拋物線y=﹣x2﹣2x+3可知,對稱軸為x=﹣1.
∵M(m,0),
∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,
∴矩形PMNQ的周長=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.
(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,
∴矩形的周長最大時,m=﹣2.
∵A(﹣3,0),C(0,3),
設(shè)直線AC的解析式y=kx+b,
∴
解得k=l,b=3,
∴解析式y=x+3,
令x=﹣2,則y=1,
∴E(﹣2,1),
∴EM=1,AM=1,
∴S=AM×EM=.
(4)∵M(﹣2,0),拋物線的對稱軸為x=﹣l,
∴N應(yīng)與原點重合,Q點與C點重合,
∴DQ=DC,
把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,
∴D(﹣1,4),
∴DQ=DC=.
∵FG=2DQ,
∴FG=4.
設(shè)F(n,﹣n2﹣2n+3),則G(n,n+3),
∵點G在點F的上方且FG=4,
∴(n+3)﹣(﹣n2﹣2n+3)=4.
解得n=﹣4或n=1,
∴F(﹣4,﹣5)或(1,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F分別是線段BC,AC的中點,連結(jié)EF.
(1)線段BE與AF的位置關(guān)系是 ,= .
(2)如圖2,當△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.
(3)如圖3,當△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),延長FC交AB于點D,如果AD=6﹣2,求旋轉(zhuǎn)角a的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學(xué)生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6個型號):
根據(jù)以上信息,解答下列問題:
(1)該班共有 名學(xué)生;
(2)補全條形統(tǒng)計圖;
(3)該班學(xué)生所穿校服型號的眾數(shù)為 ,中位數(shù)為 ;
(4)如果該校預(yù)計招收新生1500名,根據(jù)樣本數(shù)據(jù),估計新生穿170型校服的學(xué)生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖的網(wǎng)格中中每個小正方形的邊長均為,線段的兩個端點均在格點上;
(1)畫出以為一條直角邊的,點在格點上,且的面積為;
(2)在圖中畫出以為斜邊的,點在格點上,且的面積為,并請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直徑為13的⊙E,經(jīng)過原點O,并且與x軸、y軸分別交于A、B兩點,線段OA、OB(OA>OB)的長分別是方程x2+kx+60=0的兩根.
(1)OA:OB=____;
(2)若點C在劣弧OA上,連結(jié)BC交OA于D,當△BOC∽△BDA時,點D的坐標為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.
例:如圖①,在△ABC中,D為邊BC的中點,AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.
(1)設(shè)三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是________,推斷的數(shù)學(xué)依據(jù)是________.
(2)如圖②,在△ABC中,∠B=45°,AB=,BC=8,AD為邊BC的中線,求邊BC的中垂距.
(3)如圖③,在矩形ABCD中,AB=6,AD=4.點E為邊CD的中點,連結(jié)AE并延長交BC的延長線于點F,連結(jié)AC.求△ACF中邊AF的中垂距.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c交x軸于A、B兩點(A在B的左側(cè)),且OA=3,OB=1,與y軸交于C(0,3),拋物線的頂點坐標為D(﹣1,4).
(1)求A、B兩點的坐標;
(2)求拋物線的解析式;
(3)過點D作直線DE∥y軸,交x軸于點E,點P是拋物線上B、D兩點間的一個動點(點P不與B、D兩點重合),PA、PB與直線DE分別交于點F、G,當點P運動時,EF+EG是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,.點從點 出發(fā),沿著運動,速度為個單位/,在點運動的過程中,以為圓心的圓始終與斜邊相切,設(shè)⊙的面積為,點的運動時間為()().
(1)當時, ;(用含的式子表示)
(2)求與的函數(shù)表達式;
(3)在⊙P運動過程中,當⊙P與三角形ABC的另一邊也相切時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為12cm,點B,D之間的距離為16m,則線段AB的長為
A. B. 10cmC. 20cmD. 12cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com