【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°到的位置,連接,則的長(zhǎng)為( ).
A. B. C. D. 1
【答案】A
【解析】分析:連接BB′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AB=AB′,判斷出△ABB′是等邊三角形,根據(jù)等邊三角形的三條邊都相等可得AB=BB′,然后利用“邊邊邊”證明△ABC′和△B′BC′全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ABC′=∠B′BC′,延長(zhǎng)BC′交AB′于D,根據(jù)等邊三角形的性質(zhì)可得BD⊥AB′,利用勾股定理列式求出AB,然后根據(jù)等邊三角形的性質(zhì)和等腰直角三角形的性質(zhì)求出BD、C′D,然后根據(jù)BC′=BD﹣C′D計(jì)算即可得解.
詳解:如圖,連接BB′.
∵△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′.
在△ABC′和△B′BC′中,∵AB=BB';AC'=B'C',BC'=BC',∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長(zhǎng)BC′交AB′于D,則BD⊥AB′.
∵∠C=90°,AC=BC=,∴AB==2,
∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某段河流的兩岸是平行的,數(shù)學(xué)興趣小組在老師帶領(lǐng)下不用涉水過河就測(cè)得的寬度,他們是這樣做的:①在河流的一條岸邊B點(diǎn),選對(duì)岸正對(duì)的一棵樹A;②沿河岸直走20m有一棵樹C,繼續(xù)前行20m到達(dá)D處;③從D處沿河岸垂直的方向行走,當(dāng)?shù)竭_(dá)A樹正好被C樹遮擋住的E處停止行走;④測(cè)得DE的長(zhǎng)為5米.
(1)河的寬度是 米.
(2)請(qǐng)你說明他們做法的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC各頂點(diǎn)的坐標(biāo)分A(-2,-2),B(-4,-1),C(-4,-4).
(1)作出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A1B1C1;
(2)作出點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A'.若把點(diǎn)A'向右平移a個(gè)單位長(zhǎng)度后落在
△A1B1C1的內(nèi)部(不包括頂點(diǎn)和邊界),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中
①一個(gè)角的兩邊分別垂直于另一角的兩邊,則這兩個(gè)角相等或互補(bǔ)
②若點(diǎn)A在y=2x﹣3上,且點(diǎn)A到兩坐標(biāo)軸的距離相等,則點(diǎn)A在第一象限
③半徑為5的圓中,弦AB=8,則圓周上到直線AB的距離為2的共有四個(gè)
④如果AD是△ABC的高,∠CAD=∠B,那么△ABC是直角三角形
正確命題有( 。
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為打造智慧課堂,準(zhǔn)備集體購買一批平板電腦,原計(jì)劃訂購60臺(tái),每臺(tái)1000元,商家表示,如果多購,可以優(yōu)惠,結(jié)果校長(zhǎng)實(shí)際訂購了72臺(tái),每臺(tái)減價(jià)30元,但商家獲得同樣多的利潤(rùn).
(1)求每臺(tái)平板電腦的成本是多少元?
(2)求商家的利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義符號(hào)max﹛a , b﹜的含義為:當(dāng)a≥b時(shí), max﹛a , b﹜=a;當(dāng)a<b時(shí),max﹛a , b﹜=b.如 max﹛2 , -3﹜=2 , max﹛-4 , -2﹜=-2,則max﹛-x2+2x+3 , |x|﹜的最小值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),公路上有A、B、C三個(gè)車站,一輛汽車從A站以速度v1勻速駛向B站,到達(dá)B站后不停留,以速度v2勻速駛向C站,汽車行駛路程y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)圖象如圖(2)所示.
(1)當(dāng)汽車在A、B兩站之間勻速行駛時(shí),求y與x之間的函數(shù)關(guān)系式及自變量的取值范圍;
(2)求出v2的值;
(3)若汽車在某一段路程內(nèi)剛好用50分鐘行駛了90千米,求這段路程開始時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,△ABC中, ∠BAC=∠ADB,BE平分∠ABC交AD于點(diǎn)E,交AC于點(diǎn)F,過點(diǎn)E作EG//BC交AC于點(diǎn)G.(1)求證: AE=AF; (2)若AG=4,AC=7,求FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)(, )的圖象與直線相交于點(diǎn)C,過直線上點(diǎn)A(1,3)作AB⊥x軸于點(diǎn)B,交反比例函數(shù)圖象于點(diǎn)D,且AB=3BD.
(1)求k的值;
(2)求點(diǎn)C的坐標(biāo);
(3)在y軸上確實(shí)一點(diǎn)M,使點(diǎn)M到C、D兩點(diǎn)距離之和d=MC+MD,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com