【題目】如圖,反比例函數(shù)(, )的圖象與直線相交于點C,過直線上點A(1,3)作AB⊥x軸于點B,交反比例函數(shù)圖象于點D,且AB=3BD.
(1)求k的值;
(2)求點C的坐標(biāo);
(3)在y軸上確實一點M,使點M到C、D兩點距離之和d=MC+MD,求點M的坐標(biāo).
【答案】k=1;C(, );M((0, )
【解析】試題分析:首先根據(jù)點A的坐標(biāo)和AB=3BD求出點B的坐標(biāo),從而得出k的值;根據(jù)一次函數(shù)和反比例函數(shù)的解析式得出點C的坐標(biāo);作點D關(guān)于y軸對稱點E,連接CE交y軸于點M,即為所求,設(shè)直線CE的解析式為y=kx+b,將點C和點E的坐標(biāo)代入求出k和b的值,從而得到直線CE的解析式,然后求出直線與y軸的交點坐標(biāo),即點M的坐標(biāo).
試題解析:(1)∵A(1,3), ∴OB=1,AB=3, 又AB=3BD, ∴BD=1, ∴B(1,1), ∴k=1×1=1;
(2)由(1)知反比例函數(shù)的解析式為,
解方程組,得或(舍去), ∴點C的坐標(biāo)為(, );
(3)作點D關(guān)于y軸對稱點E,則E(,1),連接CE交y軸于點M,即為所求.
設(shè)直線CE的解析式為,則,解得, ,
∴直線CE的解析式為, 當(dāng)x=0時,y=, ∴點M的坐標(biāo)為(0, ).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到的位置,連接,則的長為( ).
A. B. C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上原點為O,點P表示的數(shù)為30,點Q表示的數(shù)為120,甲、乙兩只小蟲分別從O,P兩點出發(fā),沿直線勻速爬向點Q,最終達到點Q.已知甲每分鐘爬行60個單位長度,乙每分鐘爬行30個單位長度,則在此過程中,甲、乙兩只小蟲相距10個單位長度時的爬行時間為_________分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是,連接交于點O,并分別與邊交于點,連接AE,下列結(jié)論: ; ; ; 當(dāng)時, ,其中正確結(jié)論的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師布置了這樣一道作業(yè)題:
在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,α+β=120°,連接AD,求∠ADB的度數(shù).
小聰提供了研究這個問題的過程和思路:先從特殊問題開始研究,當(dāng)α=90°,β=30°時(如圖1),利用軸對稱知識,以AB為對稱軸構(gòu)造ΔABD的軸對稱圖形ΔABD′,連接CD′(如圖2),然后利用α=90°,β=30°以及等邊三角形的相關(guān)知識便可解決這個問題.
圖1 圖2
(1)請結(jié)合小聰研究問題的過程和思路,求出這種特殊情況下∠ADB的度數(shù);
(2)結(jié)合小聰研究特殊問題的啟發(fā),請解決老師布置的這道作業(yè)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳生活,綠色出行”,2017年1月,某公司向深圳市場新投放共享單車640輛.
(1)若1月份到4月份新投放單車數(shù)量的月平均增長率相同,3月份新投放共享單車1000輛.請問該公司4月份在深圳市新投放共享單車多少輛?
(2)考慮到自行車市場需求不斷增加,某商城準(zhǔn)備用不超過70000元的資金再購進A,B兩種規(guī)格的自行車100輛,已知A型的進價為500元/輛,售價為700元/輛,B型車進價為1000元/輛,售價為1300元/輛。假設(shè)所進車輛全部售完,為了使利潤最大,該商城應(yīng)如何進貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在,O是AC上的一點, 與BC,AB分別切于點C,D, 與AC相交于點E,連接BO.
(1) 求證:CE2=2DEBO;
(2) 若BC=CE=6,則AE= ,AD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸交于點,與y軸交于點B,拋物線經(jīng)過點.
求k的值和拋物線的解析式;
為x軸上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點.
若以O,B,N,P為頂點的四邊形OBNP是平行四邊形時,求m的值.
當(dāng) 時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù),當(dāng)時,函數(shù)有最大值5.
(1)求此二次函數(shù)圖象與坐標(biāo)軸的交點;
(2)將函數(shù)圖象x軸下方部分沿x軸向上翻折,得到的新圖象與直線恒有四個交點,從左到右,四個交點依次記為,當(dāng)以為直徑的圓與軸相切時,求的值.
(3)若點是(2)中翻折得到的拋物線弧部分上任意一點,若關(guān)于m的一元二次方程 恒有實數(shù)根時,求實數(shù)k的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com