【題目】為倡導(dǎo)“綠色出行,低碳生活”的號(hào)召,今年春天,安慶市的街頭出現(xiàn)了一道道綠色的風(fēng)景線--“共享單車”. 圖(1)所示的是一輛共享單車的實(shí)物圖. 圖(2)是這輛共享單車的部分幾何示意圖,其中車架檔AC長(zhǎng)為40cm,座桿CE的長(zhǎng)為18cm. 點(diǎn)A、C、E在同一條直線上,且∠CAB=60°,∠ACB=75°
(1)求車座點(diǎn)E到車架檔AB的距離;
(2)求車架檔AB的長(zhǎng).
【答案】(1)車座點(diǎn)E到車架檔AB的距離為;(2)車架檔AB的長(zhǎng)為
【解析】
(1)過(guò)E作EF⊥AB,垂足為F,運(yùn)用EF=AE·sin∠CAB=58sin60°可得;
(2)過(guò)C作CG⊥AB,垂足為G,可得AG=AC·cos∠CAB=40cos60°,CG=AC·sin∠CAB=40sin60°,在Rt△BCG中,則BG=CG=cm,故AB=AG+BG.
解(1)過(guò)E作EF⊥AB,垂足為F.
AE=AC+CE=58cm
在Rt△AEF中,∠CAB=60°,AE=58cm,
∴EF=AE·sin∠CAB=58sin60°=cm.
答:車座點(diǎn)E到車架檔AB的距離為
(2)過(guò)C作CG⊥AB,垂足為G,
在Rt△ACG中,∠CAB=60°,AC=40cm,
則∠ACG=30°,∠BCG=∠ACB-∠ACG=45°
AG=AC·cos∠CAB=40cos60°=20cm
CG=AC·sin∠CAB=40sin60°=cm
在Rt△BCG中,∠BCG=45°,CG=cm
則BG=CG=cm
∴AB=AG+BG=()cm
答:車架檔AB的長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸的一個(gè)交點(diǎn)為點(diǎn),與軸的交點(diǎn)為點(diǎn),拋物線的對(duì)稱軸與軸交于點(diǎn),與線段交于點(diǎn),點(diǎn)是對(duì)稱軸上一動(dòng)點(diǎn).
(1)點(diǎn)的坐標(biāo)是________,點(diǎn)的坐標(biāo)是________;
(2)是否存在點(diǎn),使得和相似?若存在,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,拋物線的對(duì)稱軸向右平移與線段交于點(diǎn),與拋物線交于點(diǎn),當(dāng)四邊形是平行四邊形且周長(zhǎng)最大時(shí),求出點(diǎn)的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,正方形ABCD,M在CB延長(zhǎng)線上,N在DC延長(zhǎng)線上,∠MAN=45°.求證:MN=DN-BM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,長(zhǎng)、寬均為3,高為8的長(zhǎng)方體容器,放置在水平桌面上,里面盛有水,水面高為6,繞底面一棱長(zhǎng)進(jìn)行旋轉(zhuǎn)傾斜后,水面恰好觸到容器口邊緣,圖2是此時(shí)的示意圖,則圖2中水面高度為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α(0°<α≤90°),點(diǎn)F,G,P分別是DE,BC,CD的中點(diǎn),連接PF,PG.
(1)如圖①,α=90°,點(diǎn)D在AB上,則∠FPG= °;
(2)如圖②,α=60°,點(diǎn)D不在AB上,判斷∠FPG的度數(shù),并證明你的結(jié)論;
(3)連接FG,若AB=5,AD=2,固定△ABC,將△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)PF的長(zhǎng)最大時(shí),FG的長(zhǎng)為 (用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某班甲、乙、丙三位同學(xué)最近5次數(shù)學(xué)成績(jī)及其所在班級(jí)相應(yīng)平均分的折線統(tǒng)計(jì)圖,則下列判斷錯(cuò)誤的是( ).
A. 甲的數(shù)學(xué)成績(jī)高于班級(jí)平均分,且成績(jī)比較穩(wěn)定
B. 乙的數(shù)學(xué)成績(jī)?cè)诎嗉?jí)平均分附近波動(dòng),且比丙好
C. 丙的數(shù)學(xué)成績(jī)低于班級(jí)平均分,但成績(jī)逐次提高
D. 就甲、乙、丙三個(gè)人而言,乙的數(shù)學(xué)成績(jī)最不穩(wěn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某大樓的頂部樹(shù)有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):1.414,1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)E在CD上,將△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處,點(diǎn)G在AF上,將△ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:①∠EBG=45°;②S△ABG=S△FGH;③△DEF∽△ABG;④AG+DF=FG.其中正確的是_____.(把所有正確結(jié)論的序號(hào)都選上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出(1)如圖①,在△ABC中,BC=6,D為BC上一點(diǎn),AD=4,則△ABC面積的最大值是 .
問(wèn)題探究(2)如圖②,已知矩形ABCD的周長(zhǎng)為12,求矩形ABCD面積的最大值.
問(wèn)題解決(3)如圖③,△ABC是葛叔叔家的菜地示意圖,其中AB=30米,BC=40米,AC=50米,現(xiàn)在他想利用周邊地的情況,把原來(lái)的三角形地拓展成符合條件的面積盡可能大、周長(zhǎng)盡可能長(zhǎng)的四邊形地,用來(lái)建魚(yú)塘.已知葛叔叔欲建的魚(yú)塘是四邊形ABCD,且滿足∠ADC=60°.你認(rèn)為葛叔叔的想法能否實(shí)現(xiàn)?若能,求出這個(gè)四邊形魚(yú)塘周長(zhǎng)的最大值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com