【題目】如圖,在直角坐標平面上,△AOB是直角三角形,點O在原點上,A、B兩點的坐標分別為(-1,y1)、(3,y2),線段AB交y軸于點C.若S△AOC=1,記∠AOC為α,∠BOC為β,則sin α·sin β的值為____.
【答案】
【解析】分析:首先過點A作AD⊥x軸于點D,過點B作BE⊥x軸于點E,由A、B兩點的坐標分別為(-1,y1)、(3,y2),S△AOC=1,可求得OD,OE,OC的長,繼而求得△AOB的面積,求得OAOB的值,又由三角函數(shù)的定義,即可求得答案.
詳解:過點A作AD⊥x軸于點D,過點B作BE⊥x軸于點E,
∵A、B兩點的坐標分別為(-1,y1)、(3,y2),
∴OD=1,OE=3,
∵S△AOC=1,
∴OCOD=1,
∴OC=2,
∴SRt△AOB=S△AOC+S△BOC=1+OCOE=1+3=4,
∴OAOB=4,
∴OAOB=8,
∵OA∥OC∥BE,
∴∠OAD=∠AOC=α,∠OBE=∠BOC=β,
∴sinαsinβ=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,BD為對角線.
(1)尺規(guī)作圖:作CD邊的垂直平分線EF,交CD于點E,交BD于點F(保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,若AB=4,求△DEF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年“雙十一”購物活動,商家都會利用這個契機進行打折滿減的促銷活動.某商家平時的優(yōu)惠措施是按所有商品標價打七折:“雙十一”活動期間的優(yōu)惠措施是:購買的所有商品先按標價總和打七五折,再享受折后每滿元減元的優(yōu)惠.如標價為元的商品,折后為元,再減元,即實付:(元).
(1)該商店標價總和為元的商品,在“雙十一”購買,最后實際支付只需多少元?
(2)小明媽媽在這次活動中打算購買某件商品,打折滿減后,應付金額是元,求該商品的標價.
(3)在(2)的條件下,若該商家出售的商品標價均為整數(shù),小明通過計算后告訴媽媽:通過湊單(再購買少量商品)實際支付金額只需再多付 元,就可獲得最大優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校食堂廚房的桌子上整齊地擺放著若干相同規(guī)格的碟子,碟子的個數(shù)與碟子的高度的關系如下表:
碟子的個數(shù) | 碟子的高度(單位:cm) |
1 | 2 |
2 | 2+1.5 |
3 | 2+3 |
4 | 2+4.5 |
… | … |
(1)當桌子上放有x(個)碟子時,請寫出此時碟子的高度(用含x的式子表示);
(2)分別從三個方向上看,其三視圖如上圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一列式子,按一定規(guī)律排列成, ….
(1)當a =1時,其中三個相鄰數(shù)的和是63,則位于這三個數(shù)中間的數(shù)是________;
(2)上列式子中第n個式子為_____________(n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)軸上,把表示數(shù)1的點稱為基準點,記作點.對于兩個不同的點M和N,若點M、點N到點的距離相等,則稱點M與點N互為基準變換點.例如:圖1中,點M表示數(shù)-1,點N表示數(shù)3,它們與基準點的距離都是2個單位長度,點M與點N互為基準變換點.
(1)已知點A表示數(shù)a,點B表示數(shù)b,點A與點B互為基準變換點.
①若a=0,則b=_________;若a=4,則b=_________;
②用含a的式子表示b,則b=____________;
(2)對點A進行如下操作:先把點A表示的數(shù)乘以2.5,再把所得數(shù)表示的點沿著數(shù)軸向左移動3個單位長度得到點B. 若點A與點B互為基準變換點,則點A表示的數(shù)是___________;
(3)點P在點Q的左邊,點P與點Q之間的距離為8個單位長度.對P、Q兩點做如下操作:點P沿數(shù)軸向右移動k(k>0)個單位長度得到,為的基準變換點,點沿數(shù)軸向右移動k個單位長度得到,為的基準變換點,…,依此順序不斷地重復,得到,,…,.為Q的基準變換點,將數(shù)軸沿原點對折后的落點為,為的基準變換點,將數(shù)軸沿原點對折后的落點為,…,依此順序不斷地重復,得到,,…,.若無論k為何值,與兩點間的距離都是4,則n=__________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩個工程隊承包了地鐵某標段全長3900米的施工任務,分別從南,北兩個方向同時向前掘進。已知甲工程隊比乙工程隊平均每天多掘進0.4米經(jīng)過13天的施工兩個工程隊共掘進了156米.
(1)求甲,乙兩個工程隊平均每天各掘進多少米?
(2)為加快工程進度兩工程隊都改進了施工技術,在剩余的工程中,甲工程隊平均每天能比原來多掘進0.4米,乙工程隊平均每天能比原來多掘進0.6米,按此施工進度能夠比原來少用多少天完成任務呢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com