如圖,在平行四邊形ABCD中,AC、BD相交于點O,下列結(jié)論:①OA=OC;②∠BAD=∠BCD;③AC⊥BD;④∠BAD+∠ABC=180°中,正確的個數(shù)有(     )

A.1個        B.2個         C.3個         D.4個
C

試題分析:根據(jù)平行四邊形的性質(zhì)依次分析各選項即可作出判斷.
∵平行四邊形ABCD
∴OA=OC,∠BAD=∠BCD,∠BAD+∠ABC=180°,但無法得到AC⊥BD
故選C.
點評:平行四邊形的判定和性質(zhì)是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識點,一般難度不大,需熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知矩形紙片ABCD中,AB=1,BC=2,將該紙片疊成一個平面圖形,折痕EF不經(jīng)過A點(E、F是該矩形邊界上的點),折疊后點A落在A′處,給出以下判斷:
①當(dāng)四邊形ACDF為正方形時,EF=
②當(dāng)EF=時,四邊形A′CDF為正方形
③當(dāng)EF=時,四邊形BA′CD為等腰梯形;
④當(dāng)四邊形BA′CD為等腰梯形時,EF=

其中正確的是       (把所有正確結(jié)論序號都填在橫線上)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,已知菱形的對角線的長分別為12cm、16cm,于點,則的長是_________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一組對邊平行,并且對角線互相垂直且相等的四邊形可能是(      )
A.菱形或矩形B.正方形或等腰梯形
C.矩形或等腰梯形D.菱形或直角梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知一個多邊形的內(nèi)角和是它的外角和的倍,則這個多邊形的邊數(shù)是
A.6B.8C.3D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方形ABCD內(nèi)作一個等邊三角形ABE,連接DE、CE,有如下結(jié)論:①圖中除等邊三角形ABE外,還有三個等腰三角形;②△ADE≌△BCE;③此圖形既是中心對稱圖形也是軸對稱圖形;④△ABE的面積與正方形ABCD的面積比是;⑤△DEC與△ABE的面積比為。則以上結(jié)論正確的是          .(只填正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

知識背景:同學(xué)們已經(jīng)學(xué)過有理數(shù)的大小比較,那么兩個代數(shù)式如何比較大小呢?我們通常用作差法比較代數(shù)式大小。例如:已知M=2x+3,N=2x+1,比較M和N的大小。先求M-N,若M-N>0,則M>N;若M-N<0,則M<N;若M-N=0,則M=N,本題中因為M-N=2>0,所以M>N。
知識應(yīng)用:圖⑴是邊長為a的正方形,將正方形一邊不變,另一邊增加4,得到如圖⑵所示的新長方形,此長方形的面積為;將圖(1)中正方形邊長增加2得到如圖⑶所示的新正方形,此正方形的面積為

①用含a的代數(shù)式表示(需要化簡)
②請你用作差法比較大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知邊長為4的正方形ABCD中,E為CD中點,P為BE中點,F(xiàn)為AP中點,F(xiàn)H⊥AB交AB于H連接PH則下列結(jié)論正確的有                              (   )

①BE=AE   ② ③HP//AE  ④HF=1 ⑤
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,把一個長方形紙片沿EF折疊后,點D、C分別落在D′、C′的位置,若∠EFB=65°,
則∠AED′等于
A.50°B.55°C.60°  D.65°

查看答案和解析>>

同步練習(xí)冊答案