【題目】如圖所示,在中,,AE的垂直平分線MN交BE于點C,且,則的度數是______.
【答案】
【解析】
首先連接AC,由AE的垂直平分線MN交BE于點C,可得AC=EC,又由AB+BC=BE,易證得AB=AC,然后由等腰三角形的性質與三角形內角和定理,求得∠BAE=∠BAC+∠CAE=180°-4∠E+∠E=105°,繼而求得答案.
連接AC,
∵MN是AE的垂直平分線,
∴AC=EC,
∴∠CAE=∠E,
∵AB+BC=BE,BC+EC=BE,
∴AB=EC=AC,
∴∠B=∠ACB,
∵∠ACB=∠CAE+∠E=2∠E,
∴∠B=2∠E,
∴∠BAC=180°-∠B-∠ACB=180°-4∠E,
∵∠BAE=∠BAC+∠CAE=180°-4∠E+∠E=105°,
解得:∠E=25°,
∴∠B=2∠E=50°.
故答案為:50°.
科目:初中數學 來源: 題型:
【題目】如圖a是長方形紙帶(提示:AD∥BC),將紙帶沿EF折疊成圖b,再沿GF折疊成圖c.
(1)若∠DEF=20°,則圖b中∠EGB=______,∠CFG=______;
(2)若∠DEF=20°,則圖c中∠EFC=______;
(3)若∠DEF=α,把圖c中∠EFC用α表示為______;
(4)若繼續(xù)按EF折疊成圖d,按此操作,最后一次折疊后恰好完全蓋住∠EFG,整個過程共折疊了9次,問圖a中∠DEF的度數是多少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,大樓AB右側有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點間的距離(結果精確到0.1m)(參考數據: ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知a,b,c為△ABC的三條邊的長,且滿足b2+2ab=c2+2ac.
(1)試判斷△ABC的形狀,并說明理由;
(2)若a=6,b=5,求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A市氣象站測得臺風中心在A市正東方向300千米的B處,以10千米/時的速度向北偏西60°的BF方向移動,距臺風中心200千米范圍內是受臺風影響的區(qū)域.
(1)A市是否會受到臺風的影響?寫出你的結論并給予說明;
(2)如果A市受這次臺風影響,那么受臺風影響的時間有多長?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知CO1是△ABC的中線,過點O1作O1E1∥AC交BC于點E1 , 連接AE1交CO1于點O2;過點O2作O2E2∥AC交BC于點E2 , 連接AE2交CO1于點O3;過點O3作O3E3∥AC交BC于點E3 , …,如此繼續(xù),可以依次得到點O4 , O5 , …,On和點E4 , E5 , …,En . 則OnEn=AC.(用含n的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】菱形ABCD中,AB=2,∠A=120°,點P、Q、K分別為線段BC,CD,BD上的任意一點,則PK+QK的最小值為( )
A. 1 B. 3 C. D. +1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點D,交AB于點E,過點D作DF⊥AB,垂足為F,連接DE.
(1)求證:直線DF與⊙O相切;
(2)若AE=7,BC=6,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com