【題目】如圖,已知△ABC內(nèi)接于⊙O,點D在OC的延長線上,∠B=∠CAD=30°.
(1)AD是⊙O的切線嗎?為什么?
(2)若OD⊥AB,BC=5,求⊙O的半徑.
【答案】(1)證明見解析;(2)⊙O的半徑為5.
【解析】
試題(1)理解OA,根據(jù)圓周角定理求出∠O,求出∠OAC,即可求出∠OAD=90°,根據(jù)切線的判定推出即可.
(2)求出等邊三角形OAC,求出AC,即可求出答案.
試題解析:(1)AD是⊙O的切線,理由如下:連接OA,
∵∠B=30°,
∴∠O=60°,
∵OA=OC,
∴∠OAC=60°,
∵∠CAD=30°,
∴∠OAD=90°,
又∴點A在⊙O 上,
∴AD是⊙O的切線;
(2)∵∠OAC=∠O=60°,
∴∠OCA=60°,
∴△AOC是等邊三角形,
∵OD⊥AB,
∴OD垂直平分AB,
∴AC=BC=5,
∴OA=5,
即⊙O的半徑為5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線(其中為常數(shù),),取不同數(shù)值時,可得不同直線,請研究這些直線的共同特征.
實踐操作
(1)當(dāng)時,直線的解析式為________,請在圖1中畫出圖象.
當(dāng)時,直線的解析式為________,請在圖2中畫出圖象
(2)探索發(fā)現(xiàn):
直線必經(jīng)過點(_______,_______).
(3)類比遷移:
矩形如圖2所示,若直線分矩形的面積為相等的兩部分,請在圖中直接畫出這條直線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋中裝有3個帶號碼的球,球號分別為2,3,4,這些球除號碼不同外其它均相同。甲、乙、兩同學(xué)玩摸球游戲,游戲規(guī)則如下:
先由甲同學(xué)從中隨機(jī)摸出一球,記下球號,并放回攪勻,再由乙同學(xué)從中隨機(jī)摸出一球,記下球號。將甲同學(xué)摸出的球號作為一個兩位數(shù)的十位上的數(shù),乙同學(xué)的作為個位上的數(shù)。若該兩位數(shù)能被4整除,則甲勝,否則乙勝.
問:這個游戲公平嗎?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標(biāo)桿BC,再在AB的延長線上選擇點D豎起標(biāo)桿DE,使得點E與點C、A共線.
已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB=BC,∠ABC=90°,以AB為直徑的⊙O交OC與點D,AD的延長線交BC于點E,過D作⊙O的切線交BC于點F.下列結(jié)論:①CD2=CE·CB;②4EF 2=ED ·EA;③∠OCB=∠EAB;④.其中正確的只有____________________.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A是半徑為6cm的⊙O上的定點,動點P從A出發(fā),以πcm/s的速度沿圓周按順時針方向運動,當(dāng)點P回到A時立即停止運動.設(shè)點P運動時間為t(s);
(1)當(dāng)t=6s時,∠POA的度數(shù)是________;
(2)當(dāng)t為多少時,∠POA=120°;
(3)如果點B是OA延長線上的一點,且AB=AO,問t為多少時,△POB為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,直線l經(jīng)過⊙O上一點C,過點A作AD⊥l于點D,交⊙O于點E,AC平分∠DAB.
(1)求證:直線l是⊙O的切線;
(2)若DC=4,DE=2,求線段AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:閱讀下列材料:已知二次三項式2x2+x+a有一個因式是(x+2),求另一個因式以及a 的值
解:設(shè)另一個因式是(2x+b),
根據(jù)題意,得2x2+x+a=(x+2)(2x+b),
展開,得2x2+x+a =2x2+(b+4)x+2b,
所以,解得,
所以,另一個因式是(2x3),a 的值是6.
請你仿照以上做法解答下題:已知二次三項式3x2 10x m 有一個因式是(x+4),求另一個因式以及m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,BD是對角線,∠ABC=90 °,tan∠ABD= ,AB=20,BC=10,AD=13,則線段CD=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com