【題目】四邊形ABCD中,BD是對(duì)角線,∠ABC=90 °,tan∠ABD= ,AB=20,BC=10,AD=13,則線段CD=________.
【答案】17或.
【解析】
作AH⊥BD于H,CG⊥BD于G,根據(jù)正切的定義分別求出AH、BH,根據(jù)勾股定理求出HD,得到BD,根據(jù)勾股定理計(jì)算即可.
當(dāng)∠ADB為銳角時(shí),作AH⊥BD于H,CG⊥BD于G,
∵tan∠ABD= ,
∴ =,
設(shè)AH=3x,則BH=4x,
由勾股定理得,(3x)2+(4x)2=202,
解得,x=4,
則AH=12,BH=16,
在Rt△AHD中,HD==5,
∴BD=BH+HD=21,
∵∠ABD+∠CBD=90°,∠BCH+∠CBD=90°,
∴∠ABD=∠CBH,
∴ =,又BC=10,
∴BG=6,CG=8,
∴DG=BD﹣BG=15,
∴CD==17,
當(dāng)∠ADB為鈍角時(shí),CD′==,
故答案為:17或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長(zhǎng)線上,∠B=∠CAD=30°.
(1)AD是⊙O的切線嗎?為什么?
(2)若OD⊥AB,BC=5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我漁政310船在南海海面上沿正東方向勻速航行,在A地觀測(cè)到我漁船C在東北方向上的我國(guó)某傳統(tǒng)漁場(chǎng).若漁政310船航向不變,航行半小時(shí)后到達(dá)B處,此時(shí)觀測(cè)到我漁船C在北偏東30°方向上.問(wèn)漁政310船再航行多久,離我漁船C的距離最近?(假設(shè)我漁船C捕魚(yú)時(shí)移動(dòng)距離忽略不計(jì),結(jié)果不取近似值.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣2,0),B(0, ),C(4,0),其對(duì)稱軸與x軸交于點(diǎn)D,若P為y軸上的一個(gè)動(dòng)點(diǎn),連接PD,PB+PD的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)從以下兩個(gè)小題中任選一個(gè)作答,若多選,則按所選的第一題計(jì)分.
A.如圖,DE為△ABC的中位線,點(diǎn)F為DE上一點(diǎn),且∠AFB=90°,若AB=8,BC=10,則EF的長(zhǎng)為________.
B.小智同學(xué)在距大雁塔塔底水平距離為138米處,看塔頂?shù)难鼋菫?/span>24.8(不考慮身高因素),則大雁塔市約為________米.(結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某手機(jī)銷售商從廠家購(gòu)進(jìn)了兩種型號(hào)的手機(jī),已知一臺(tái)型手機(jī)的進(jìn)價(jià)比一臺(tái)型手機(jī)的進(jìn)價(jià)多300元,用7500元購(gòu)進(jìn)型手機(jī)和用6000元購(gòu)進(jìn)型手機(jī)的數(shù)量相同.
(1)求一臺(tái)型手機(jī)和一臺(tái)型手機(jī)的進(jìn)價(jià)各是多少元?
(2)在銷售過(guò)程中,型手機(jī)因?yàn)樾詢r(jià)比高,更受消費(fèi)者的歡迎.為了增大型手機(jī)的銷量,該銷售商決定對(duì)型手機(jī)進(jìn)行降價(jià)銷售.經(jīng)調(diào)查,當(dāng)型手機(jī)的售價(jià)為1800元時(shí),每天可賣(mài)出4臺(tái),在此基礎(chǔ)上,售價(jià)每降低50元,每天將多售出1臺(tái).如果每天銷售型手機(jī)的利潤(rùn)為3200元,請(qǐng)問(wèn)該手機(jī)銷售商應(yīng)將型手機(jī)的售價(jià)降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,MN表示某飲水工程的一段設(shè)計(jì)路線,從M到N的走向?yàn)槟掀珫|30°,在M的南偏東60°的方向上有一點(diǎn)A,以點(diǎn)A為圓心.以500m為半徑的圓形區(qū)域?yàn)榫用駞^(qū),取MN上另一點(diǎn)B,測(cè)得BA的方向?yàn)槟掀珫|75°,已知MB=400m.通過(guò)計(jì)算回答,如果不改變方向,輸水路線是否會(huì)穿過(guò)該居民區(qū)?(≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于 的方程 有三個(gè)根,且這三個(gè)根恰好可以作為一個(gè)三角形的三條邊的長(zhǎng),則 的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖△ABC,AB=AC,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△AEF,連結(jié)BE、CF相交于點(diǎn)D.
(1)求證:BE=CF;
(2)已知四邊形ACDE是菱形,∠BAC=45°,AB=AC=1.
①求旋轉(zhuǎn)角 ∠BAE的度數(shù);
②求BD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com