【題目】以邊長(zhǎng)為2的正方形的中心O為端點(diǎn),引兩條相互垂直的射線,分別與正方形的邊交于A、B兩點(diǎn),則線段AB的取值范圍是

【答案】 ≤AB≤2
【解析】解:如圖所示: ∵四邊形CDEF是正方形,
∴∠OCD=∠ODB=45°,∠COD=90°,OC=OD,
∵AO⊥OB,
∴∠AOB=90°,
∴∠COA+∠AOD=90°,∠AOD+∠DOB=90°,
∴∠COA=∠DOB,
在△COA和△DOB中, ,
∴△COA≌△DOB(ASA),
∴OA=OB,
設(shè)OA=OB=a,
∵∠AOB=90°,
∴△AOB是等腰直角三角形,
由勾股定理得:AB2=OA2+OB2=2a2 ,
由題意可得:1≤a≤
≤AB≤2,
所以答案是 ≤AB≤2.

【考點(diǎn)精析】掌握正方形的性質(zhì)是解答本題的根本,需要知道正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,D,E三點(diǎn)在同一直線上,且△BAD≌△ACE,試說(shuō)明:

(1)BD=DE+CE;

(2)△ABD滿足什么條件時(shí),BD∥CE?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yx24x+3,當(dāng)a≤x≤a+5時(shí),函數(shù)y的最小值為﹣1,則a的取值范圍是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知OABC的頂點(diǎn)A、C分別在直線x=2和x=4上,O為坐標(biāo)原點(diǎn),直線x=2分別與x軸和OC邊交于D、E,直線x=4分別與x軸和AB邊的交于點(diǎn)F、G.

(1)如圖,在點(diǎn)A、C移動(dòng)的過(guò)程中,若點(diǎn)B在x軸上,
①直線 AC是否會(huì)經(jīng)過(guò)一個(gè)定點(diǎn),若是,請(qǐng)直接寫出定點(diǎn)的坐標(biāo);若否,請(qǐng)說(shuō)明理由.
OABC是否可以形成矩形?如果可以,請(qǐng)求出矩形OABC的面積;若否,請(qǐng)說(shuō)明理由.
③四邊形AECG是否可以形成菱形?如果可以,請(qǐng)求出菱形AECG的面積;若否,請(qǐng)說(shuō)明理由.
(2)在點(diǎn)A、C移動(dòng)的過(guò)程中,若點(diǎn)B不在x軸上,且當(dāng)OABC為正方形時(shí),直接寫出點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,O是兩條對(duì)角線的交點(diǎn),過(guò)O點(diǎn)的三條直線將菱形分成陰影和空白部分.當(dāng)菱形的兩條對(duì)角線的長(zhǎng)分別為6和8時(shí),則陰影部分的面積為(
A.24 cm2
B.20 cm2
C.16 cm2
D.12 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開展學(xué)生安全知識(shí)競(jìng)賽.現(xiàn)抽取部分學(xué)生的競(jìng)賽成績(jī)(滿分為100分,得分均為整數(shù))進(jìn)行統(tǒng)計(jì),繪制了圖中兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息,回答下列問(wèn)題:

(1)a= , n=;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)該校共有2 000名學(xué)生.若成績(jī)?cè)?0分以上的為優(yōu)秀,請(qǐng)你估計(jì)該校成績(jī)優(yōu)秀的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,則a與c平行嗎?為什么?

解:a與c平行.

理由:因?yàn)椤?=∠2(  ),

所以a∥b (           ).

因?yàn)椤?+∠4=180°(    ),

所以b∥c (         ).

所以a∥c (               ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若x2﹣3y﹣5=0,則6y﹣2x2﹣6的值為(
A.﹣4
B.4
C.﹣16
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x2+y2=10,xy=3,則x+y=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案