【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,動點P從點B出發(fā)沿射線BC以1cm/s的速度移動,設(shè)運動的時間為t秒,當△ABP為等腰三角形時,t的取值為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.
(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?
(2)若單獨租用一臺車,租用哪臺車合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點E為△ABC的內(nèi)心,連接AE并延長交⊙O于D點,連接BD并延長至F,使得BDDF,連接CF、BE.
(1)求證:DBDE;
(2)求證:直線CF為⊙O的切線;
(3)若CF4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖、圖、圖,在矩形中,是邊上的一點,以為邊作平行四邊形,使點在的對邊上,
如圖,試說明:平行四邊形的面積與矩形的面積相等;
如圖,若平行四邊形是矩形,與交于點,試說明:、、、四點在同一個圓上;
如圖,若,平行四邊形是正方形,且是的中點,交于點,連接,判斷以為直徑的圓與直線的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是正方形ABCD外一點,連接AE、BE和DE,過點A作AE的垂線交DE于點P.若AE=AP=1,PB=3.下列結(jié)論:①△APD≌△AEB;②EB⊥ED;③點B到直線AE的距離為;④S正方形ABCD=8+.則正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=ax+b(a≠0)與y軸交與點C,與雙曲線y=(m≠0)交于A、B兩點,AD⊥y軸于點D,連接BD,已知OC=AD=2,cos∠ACD=.
(1)求直線AB和雙曲線的解析式.
(2)求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,過C作AB邊上的高CD,H為BC邊上的中點,連接DH,CD上有一點F,且AD=DF,連接BF并延長交AC于E,交DH于G.
(1)若AC=5,DH=2,求DF的長.
(2)若AB=CB,求證:BG=AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線y=-x+1與拋物線y=ax2+bx+c(a≠0)相交于點A(1,0)和點D(-4,5),并與y軸交于點C,拋物線的對稱軸為直線x=-1,且拋物線與x軸交于另一點B.
(1)求該拋物線的函數(shù)表達式;
(2)若點E是直線下方拋物線上的一個動點,求出△ACE面積的最大值;
(3)如圖2,若點M是直線x=-1的一點,點N在拋物線上,以點A,D,M,N為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點M的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校詩詞知識競賽培訓(xùn)活動中,在相同條件下對甲、乙兩名學(xué)生進行了10次測驗,他們的10次成績?nèi)缦拢▎挝唬悍郑?/span>
整理,分析過程如下:
成績 學(xué)生 | ||||||
甲 | 0 | 1 | 4 | 5 | 0 | 0 |
乙 | 1 | 1 | 4 | 2 | 1 | 1 |
(1)兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示,請補充完整:
學(xué)生 | 極差 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 83.7 | 86 | 13.21 | ||
乙 | 24 | 83.7 | 82 | 46.21 |
(2)若從甲、乙兩人中選擇一人參加知識競賽,你會選 (填“甲”或“乙”),理由為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com