【題目】某校組織一項公益知識競賽,比賽規(guī)定:每個班級由2名男生、2名女生及1名班主任老師組成代表隊.但參賽時,每班只能有3名隊員上場參賽,班主任老師必須參加,另外2名隊員分別在2名男生和2名女生中各隨機抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊,求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用畫樹狀圖列表列舉等方法給出分析過程)

【答案】.

【解析】

列表得出所有等可能的情況數(shù),找出抽到由男生甲、女生丙和這位班主任一起上場參賽的情況數(shù),即可求出所求的概率.

設(shè)男同學(xué)標(biāo)記為A、B;女學(xué)生標(biāo)記為1、2,可能出現(xiàn)的所有結(jié)果列表如下:

/

(乙,甲)

(丙,甲)

(丁,甲)

(甲,乙)

/

(丙,乙)

(丁,乙)

(甲,丙)

(乙,丙)

/

(丁,丙)

(甲,。

(乙,。

(丙,。

/

共有12種可能的結(jié)果,且每種的可能性相同,其中恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的結(jié)果有2種,

所以恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:方程組的解x為非正數(shù),y為負(fù)數(shù).

(1)a的取值范圍;

(2)化簡|a3||a2|;

(3)a的取值范圍中,當(dāng)a為何整數(shù)時,不等式2axx2a1的解為x1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識準(zhǔn)備:數(shù)軸上兩點對應(yīng)的數(shù)分別為.則兩點之間的距離表示為:

問題探究:數(shù)軸上兩點對應(yīng)的數(shù)分別為滿足

直接寫出:___、

在數(shù)軸上有一點對應(yīng)的數(shù)為,請問:當(dāng)點兩點的距離和為,滿足什么條件?請利用數(shù)軸進(jìn)行說明(此時最小)

拓展:當(dāng)數(shù)軸上三點對應(yīng)的數(shù)分別為在數(shù)軸上有一點對應(yīng)的數(shù)為,當(dāng)滿足什么條件時,的值最小?

應(yīng)用:國慶期間漢口江灘武漢關(guān)至長江二橋之間是觀看“70周年國慶燈光秀”的理想?yún)^(qū)域,武漢關(guān)與長江二橋相距約公里。在國慶期間,為了服務(wù)廣大市民,漢口江灘管理處在漢口江灘武漢關(guān)至長江二橋之間每隔公里安排了便民服務(wù)小組(武漢關(guān)與長江二橋不安排) ,還需要設(shè)置一個便民服務(wù)物資站,請問便民服務(wù)物資站應(yīng)該設(shè)置在什么地方,使它到各個便民服務(wù)小組的距離和最小,最小值是多少公里?便民服務(wù)物資站位置代表的數(shù)記作利用下圖直接給出結(jié)果:滿足的條件: 最小值為 公里.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,E在正方形ABCD內(nèi),對角線AC上有一點P使PE+PD的和最小,這個最小值為( )

A. B. C. 3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,AB=10,AC=2,B=30°,則ABC的面積等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對角線長分別為68的菱形ABCD如圖所示,點O為對角線的交點,過點O折疊菱形,使B,B′兩點重合,MN是折痕.若B'M=1,則CN的長為(  )

A. 7 B. 6 C. 5 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC頂點B的坐標(biāo)為(8,3),定點D的坐標(biāo)為(12,0),動點P從點C出發(fā).以每秒1個單位長度的速度沿CB勻速運動,動點Q從點D出發(fā)以每秒2個單位長度的速度沿x軸的負(fù)方向勻速運動,P,Q兩點同時運動當(dāng)Q點到達(dá)O點時兩點同時停止運動.設(shè)運動時間為t秒,

(1)當(dāng)t為何值時,四邊形OCPQ為矩形?

(2)當(dāng)t為何值時以C,P,Q,A為頂點的四邊形為平行四邊形?

(3)E點坐標(biāo)(5,0),當(dāng)△OEP為等腰三角形時,請直接寫出所有符合條件的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,ABAC,BCBD,ADDEEB,則∠A的度數(shù)是(  )

A.30°B.36°C.45°D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點,與y軸交于點C.已知點A的坐標(biāo)為(﹣1,0),點O為坐標(biāo)原點,OC=3OA,拋物線C1的頂點為G.

(1)求出拋物線C1的解析式,并寫出點G的坐標(biāo);

(2)如圖2,將拋物線C1向下平移k(k0)個單位,得到拋物線C2,設(shè)C2與x軸的交點為A′、B′,頂點為G′,當(dāng)A′B′G′是等邊三角形時,求k的值:

(3)在(2)的條件下,如圖3,設(shè)點M為x軸正半軸上一動點,過點M作x軸的垂線分別交拋物線C1、C2于P、Q兩點,試探究在直線y=﹣1上是否存在點N,使得以P、Q、N為頂點的三角形與AOQ全等,若存在,直接寫出點M,N的坐標(biāo):若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案