【題目】(提出問題)如圖1,在等邊三角形ABC內(nèi)一點(diǎn)P,PA=3,PB=4,PC=5.求∠APB的度數(shù)?小明提供了如下思路:

如圖2,將APCA點(diǎn)順時(shí)針旋轉(zhuǎn)60°AP'B ,AP'=AP=3,P'C=PB=4,P'AC=PAB ,所以∠P'AC+CAP=PAC+BAP ,即∠P'AP=BAC=60° ,所以AP'P為等邊三角形 ,所以∠A P'P=60° ,

……按照小明的解題思路,

易求得∠APB=

(嘗試應(yīng)用)

如圖3,在等邊三角形ABC外一點(diǎn)P,PA=6,PB=10,PC=8.求∠APC的度數(shù)?

(解決問題)

如圖4,平面直角坐標(biāo)系xoy中,直線AB的解析式為y=x+b(b>0),在第一象限內(nèi)一點(diǎn)P,滿足PB:PO:PA=1:2:3,則∠BPO= 度(直接寫出答案)

【答案】【解決問題】 150°;【嘗試應(yīng)用】30°;【解決問題】135°

【解析】

解決問題:由題意得AP'=AP=PP',根據(jù)勾股定理的逆定理,可知△P'PB是直角三角形即可求解.

嘗試應(yīng)用:將ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,連接PP',得到APP'是等邊三角形,PP'C是直角三角形.

解決問題:將APOO逆時(shí)針旋轉(zhuǎn)90°,連接PP'證明△PP'O為等腰直角三角形,根據(jù)勾股定理證明△PP'B為直角三角形即可.

解決問題:150°.

AP'=AP=PP'=3

PP'2+BP2= BP'2

∴△BP'P為直角三角形

∴∠APB=150°

嘗試應(yīng)用:∠APC=30°,提示:將ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,連接PP',得到APP'是等邊三角形,PP'C是直角三角形.

ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,連接PP',PB= P'C=10

∴△APP'是等邊三角形

PP'=6

PP'2+PC2= P'C2

PP'C是直角三角形

∴∠APC=P'PC- P'PA=30°

解決問題:類比前面的方法,通過旋轉(zhuǎn)構(gòu)造直角三角形,可求得結(jié)果為135°

APOO逆時(shí)針旋轉(zhuǎn)90°,連接PP',

因?yàn)椤?/span>P’OP是等腰直角三角形,

所以PP’==2,

因?yàn)椤?/span>P’OB≌△POA,

所以P’B=PA=3.

在△P’PB中,∵PP’2+PB2=P’B2,

∴△P’PB是直角三角形,

∴∠BPP’=90°,

∴∠BPO=90°+45°=135°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:如圖①點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,連結(jié)AEAF、EF,將ABE、ADF分別沿AE、AF折疊,折疊后的圖形恰好能拼成與AEF完全重合的三角形.若BE2,DF3,求AB的長(zhǎng);

拓展:如圖②點(diǎn)E、F分別在四邊形BACDBC、CD上,且∠B=∠D90°.連結(jié)AE、AF、EFABEADF分別沿AE、AF折疊,折疊后的圖形恰好能拼成與AEF完全重合的三角形.若∠EAF30°,AB4,則ECF的周長(zhǎng)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)MP,N分別為DE,DC,BC的中點(diǎn).

(1)觀察猜想

1中,線段PMPN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;

(2)探究證明

ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,點(diǎn)E,F分別是邊ABAD上的點(diǎn),連接CE,CF并延長(zhǎng),分別交DA,BA的廷長(zhǎng)線于點(diǎn)HG

1)如圖1,若四邊形ABCD是菱形,∠ECFBCD,求證:AC2AHAG;

2)如圖2,若四邊形ABCD是正方形,∠ECF45°BC4,設(shè)AEx,AGy,求yx的函數(shù)關(guān)系式;

3)如圖3,若四邊形ABCD是矩形,ABAD12,CGCH,∠GCH45°,請(qǐng)求tanAHG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°D是邊AC上的一點(diǎn),連接BD,使∠A=2∠1,EBC上的一點(diǎn),以BE為直徑的⊙O經(jīng)過點(diǎn)D

1)求證:AC⊙O的切線;

2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結(jié)果保留根號(hào)和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,AB3cm.點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3cm的速度沿BCCDDA向終點(diǎn)A運(yùn)動(dòng),到達(dá)各自終點(diǎn)時(shí)停止運(yùn)動(dòng).設(shè)動(dòng)點(diǎn)的運(yùn)動(dòng)時(shí)間為x秒,△PBQ的面積為ycm2,則能正確表示△PBQ的面積y與時(shí)間x的關(guān)系的圖象是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從淄博汽車站到銀泰城有甲,乙,丙三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從淄博汽車站到銀泰城的用時(shí)情況,在每條線路上隨機(jī)選取了500個(gè)班次的公交車,收集了這些班次的公交車用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:

線路/公交車用時(shí)的頻數(shù)/公交車用時(shí)

30t35

35t40

40t45

45t50

合計(jì)

59

151

166

124

500

50

50

122

278

500

45

265

167

23

500

早高峰期間,乘坐線路上的公交車,從淄博汽車站到銀泰城“用時(shí)不超過45分鐘”的可能性最大.(  )

A.B.C.D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,菱形中,,垂足為,,,把四邊形沿所在直線折疊,使點(diǎn)落在上的點(diǎn)處,點(diǎn)落在點(diǎn)處,于點(diǎn).

1)證明:;

2)求四邊形面積;

3)如圖2,點(diǎn)從點(diǎn)出發(fā),沿路徑以每秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,當(dāng)為何值時(shí),的面積與四邊形的面積相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)尺規(guī)作圖:如圖,是平面上兩個(gè)定點(diǎn),在平面上找一點(diǎn),使構(gòu)成等腰直角三角形,且為直角頂點(diǎn).(畫出一個(gè)點(diǎn)即可)

2)在(1)的條件下,若,,則點(diǎn)的坐標(biāo)是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案