【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上的一點(diǎn),連接BD,使∠A=2∠1EBC上的一點(diǎn),以BE為直徑的⊙O經(jīng)過(guò)點(diǎn)D

1)求證:AC⊙O的切線(xiàn);

2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結(jié)果保留根號(hào)和π

【答案】1)證明見(jiàn)試題解析;(2

【解析】試題分析:(1)由OD=OB∠1=∠ODB,則根據(jù)三角形外角性質(zhì)得∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,所以∠DOC=∠A,由于∠A+∠C=90°,所以∠DOC+∠C=90°,則可根據(jù)切線(xiàn)的判定定理得到AC⊙O的切線(xiàn);

2)由A=60°得到C=30°,DOC=60°,根據(jù)含30度的直角三角形三邊的關(guān)系得CD=2,然后利用陰影部分的面積=SCOD﹣S扇形DOE和扇形的面積公式求解.

試題解析:(1)證明:∵OD=OB,

∴∠1=∠ODB,

∴∠DOC=∠1+∠ODB=2∠1

∵∠A=2∠1,

∴∠DOC=∠A

∵∠A+∠C=90°,

∴∠DOC+∠C=90°,

∴OD⊥DC,

∴AC⊙O的切線(xiàn);

2)解:∵∠A=60°,

∴∠C=30°,∠DOC=60°,

Rt△DOC中,OD=2,

CD=OD=2,

陰影部分的面積=SCOD﹣S扇形DOE

=×2×2=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰RtABC中,ACB=90DBC邊上的中點(diǎn),DEAB,垂足為點(diǎn)E,過(guò)點(diǎn)BBFACDE的延長(zhǎng)線(xiàn)于點(diǎn)F,連接CF

1求證:ADCF

2連接AF,試判斷ACF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:50°﹣15°30′=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝店同時(shí)以300元的價(jià)錢(qián)出售兩件不同進(jìn)價(jià)的衣服,其中一件賺了20%,而另一件虧損了20%.則賣(mài)這兩件衣服盈虧情況是( )
A.不盈不虧
B.虧損
C.盈利
D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角分別是∠A.∠B、∠C,若∠A=60°,∠C=2∠B,則∠C=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a2+2a+b2-4b+5=0 ,求ab=_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)(2,-3)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)是( )

A. (-2,3) B. (-2,-3) C. (2,3) D. (2,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果(anbmb)3=a9b15,那么(  )

A. m=4,n=3 B. m=4n=4 C. m=3,n=4 D. m=3,n=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)一種商品,每件商品進(jìn)價(jià)30元.試銷(xiāo)中發(fā)現(xiàn)這種商品每天的銷(xiāo)售量y(件)與每件銷(xiāo)售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28

(1)已知y與x滿(mǎn)足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式.(不寫(xiě)出自變量x的取值范圍);

(2)如果商店銷(xiāo)售這種商品,每天要獲得150元,那么每件商品的銷(xiāo)售價(jià)應(yīng)定為多少元?

(3)設(shè)該商店每天銷(xiāo)售這種商品所獲利潤(rùn)為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷(xiāo)售價(jià)定為多少元時(shí)利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案