【題目】如圖,A、B、C、D為矩形的四個(gè)頂點(diǎn),AB=16cm,AD=6cm,動(dòng)點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動(dòng),一直到達(dá)B為止,點(diǎn)Q以2 cm/s的速度向D移動(dòng).
(1)P、Q兩點(diǎn)從出發(fā)開始到幾秒?四邊形PBCQ的面積為33cm2;
(2)P、Q兩點(diǎn)從出發(fā)開始到幾秒時(shí)?點(diǎn)P和點(diǎn)Q的距離是10cm.
【答案】
(1)解:設(shè)P、Q兩點(diǎn)從出發(fā)開始到x秒時(shí)四邊形PBCQ的面積為33cm2,
則PB=(16﹣3x)cm,QC=2xcm,
根據(jù)梯形的面積公式得 (16﹣3x+2x)×6=33,
解之得x=5
(2)解:設(shè)P,Q兩點(diǎn)從出發(fā)經(jīng)過t秒時(shí),點(diǎn)P,Q間的距離是10cm,
作QE⊥AB,垂足為E,
則QE=AD=6,PQ=10,
∵PA=3t,CQ=BE=2t,
∴PE=AB﹣AP﹣BE=|16﹣5t|,
由勾股定理,得(16﹣5t)2+62=102,
解得t1=4.8,t2=1.6.
答:(1)P、Q兩點(diǎn)從出發(fā)開始到5秒時(shí)四邊形PBCQ的面積為33cm2;(2)從出發(fā)到1.6秒或4.8秒時(shí),點(diǎn)P和點(diǎn)Q的距離是10cm.
【解析】(1)設(shè)P、Q兩點(diǎn)從出發(fā)開始到x秒時(shí)四邊形PBCQ的面積為33cm2 , 則PB=(16﹣3x)cm,QC=2xcm,根據(jù)梯形的面積公式可列方程: (16﹣3x+2x)×6=33,解方程可得解;(2)作QE⊥AB,垂足為E,設(shè)運(yùn)動(dòng)時(shí)間為t秒,用t表示線段長,用勾股定理列方程求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中三個(gè)內(nèi)角的度數(shù)滿足∠ABC:∠C:∠A=5:6:7,BD是△ABC的角平分線,DE是△DBC的高.
(1)求△ABC各內(nèi)角的度數(shù);
(2)求圖中的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.若以BD為直徑的⊙M經(jīng)過點(diǎn)C.
(1)請(qǐng)直接寫出C,D的坐標(biāo)(用含a的代數(shù)式表示);
(2)求拋物線的函數(shù)表達(dá)式;
(3)⊙M上是否存在點(diǎn)E,使得∠EDB=∠CBD?若存在,請(qǐng)求出所滿足的條件的E的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CN是等邊△的外角內(nèi)部的一條射線,點(diǎn)A關(guān)于CN的對(duì)稱點(diǎn)為D,連接AD,BD,CD,其中AD,BD分別交射線CN于點(diǎn)E,P.
(1)依題意補(bǔ)全圖形;
(2)若,求的大小(用含的式子表示);
(3)用等式表示線段, 與之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,如圖所示,△AOB是邊長為2的等邊三角形,將△AOB繞著點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)得到△DCB,使得點(diǎn)D落在x軸的正半軸上,連接OC、AD.
(1)求證:OC=AD;
(2)求OC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+x﹣6與x軸兩個(gè)交點(diǎn)分別是A、B(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求A、B的坐標(biāo);
(2)利用函數(shù)圖象,寫出y<0時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳環(huán)保,綠色出行”的概念得到廣大群眾的接受,越來越多的人喜歡選擇騎自行車作為出行工具.小軍和爸爸同時(shí)騎車去圖書館,爸爸先以150米/分的速度騎行一段時(shí)間,休息了5分鐘,再以m米/分的速度到達(dá)圖書館.小軍始終以同一速度騎行,兩人騎行的路程為y(米)與時(shí)間x(分鐘)的關(guān)系如圖.請(qǐng)結(jié)合圖象,解答下列問題:
(1)填空:a=________;b=________;m=________.
(2)若小軍的速度是 120 米/分,求小軍第二次與爸爸相遇時(shí)距圖書館的距離.
(3)在(2)的條件下,爸爸自第二次出發(fā)后,騎行一段時(shí)間后與小軍相距100 米,此時(shí) 小軍騎行的時(shí)間為________分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經(jīng)過點(diǎn)B(1,4)和點(diǎn)E(3,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)D在線段OC上,且BD⊥DE,BD=DE,求D點(diǎn)的坐標(biāo);
(3)在條件(2)下,在拋物線的對(duì)稱軸上找一點(diǎn)M,使得△BDM的周長為最小,并求△BDM周長的最小值及此時(shí)點(diǎn)M的坐標(biāo);
(4)在條件(2)下,從B點(diǎn)到E點(diǎn)這段拋物線的圖象上,是否存在一個(gè)點(diǎn)P,使得△PAD的面積最大?若存在,請(qǐng)求出△PAD面積的最大值及此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com