【題目】如圖,菱形OABC的頂點C的坐標為(3,4).頂點A在x軸的正半軸上,反比例函數(shù)y= (x>0)的圖象經過頂點B,則k的值為( )

A.12
B.20
C.24
D.32

【答案】D
【解析】解:過C點作CD⊥x軸,垂足為D,
∵點C的坐標為(3,4),
∴OD=3,CD=4,
∴OC= = =5,
∴OC=BC=5,
∴點B坐標為(8,4),
∵反比例函數(shù)y= (x>0)的圖象經過頂點B,
∴k=32,
故選:D.

【考點精析】關于本題考查的反比例函數(shù)的圖象和反比例函數(shù)的性質,需要了解反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點;性質:當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內y值隨x值的增大而減; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內y值隨x值的增大而增大才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+(m﹣1)x+m(m>1)與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C(0,3).

(1)求拋物線的解析式;
(2)點D和點C關于拋物線的對稱軸對稱,點你F在直線AD上方的拋物線上,F(xiàn)G⊥AD于G,F(xiàn)H∥x軸交直線AD于H,求△FGH的周長的最大值;
(3)點M是拋物線的頂點,直線l垂直于直線AM,與坐標軸交于P、Q兩點,點R在拋物線的對稱軸上,使得△PQR是以PQ為斜邊的等腰直角三角形,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O為△ABC的外接圓,點E是△ABC的內心,AE的延長線交BC于點F,交⊙O于點D
(1)如圖1,求證:BD=ED;
(2)如圖2,AD為⊙O的直徑.若BC=6,sin∠BAC= ,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線y=ax2+bx+c的頂點為M(﹣2,﹣4),與x軸交于A、B兩點,且A(﹣6,0),與y軸交于點C.

(1)求拋物線的函數(shù)解析式;
(2)求△ABC的面積;
(3)能否在拋物線第三象限的圖象上找到一點P,使△APC的面積最大?若能,請求出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,在平面直角坐標系中直線y=x﹣2與y軸相交于點A,與反比例函數(shù)在第一象限內的圖象相交于點B(m,2).
(1)求反比例函數(shù)的關系式;
(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內交于點C,且△ABC的面積為18,求平移后的直線的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內部.將AF延長交邊BC于點G.若 = ,則 =用含k的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y= x2+bx+c(b,c是常數(shù),且c<0)與x軸分別交于點A、B(點A位于點B的左側),與y軸的負半軸交于點C,點A的坐標為(﹣1,0).

(1)b= , 點B的橫坐標為(上述結果均用含c的代數(shù)式表示);
(2)連接BC,過點A作直線AE∥BC,與拋物線y= x2+bx+c交于點E,點D是x軸上的一點,其坐標為(2,0).當C,D,E三點在同一直線上時,求拋物線的解析式;
(3)在(2)條件下,點P是x軸下方的拋物線上的一個動點,連接PB,PC,設所得△PBC的面積為S.
求S的取值范圍;
(4)若△PBC的面積S為整數(shù),則這樣的△PBC共有個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α(0°<α<90°),若∠1=110°,則∠α=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,水平放置的圓柱形排水管的截面半徑為10cm,截面中有水部分弓形高為5cm,則水面寬AB為cm.

查看答案和解析>>

同步練習冊答案