【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),與x軸的另一個交點在點(1,0)和(2,0)之間,對稱軸l如圖所示,則下列結論:①abc>0;②a﹣b+c=0;③a+c>0;④2a+c<0,其中正確的結論個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】分析:根據(jù)拋物線的開口方向、對稱軸、與y軸的交點,判斷abc的符號即可判斷①的結論;根據(jù)函數(shù)與x軸的交點(-1,0)可得a-b+c=0,即可得到②的結論;由②的結論和與x軸的另一個交點(1,y)得到a+b+c>0,從而判斷出③的結論;同上,可由x=2判斷2a+c的關系.
詳解:①∵二次函數(shù)圖象的開口向下,
∴a<0,
∵二次函數(shù)圖象的對稱軸在y軸右側(cè),
∴﹣>0,
∴b>0,
∵二次函數(shù)的圖象與y軸的交點在y軸的正半軸上,
∴c>0,
∴abc<0,故①錯誤;
②∵拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),
∴a﹣b+c=0,故②正確;
③∵a﹣b+c=0,∴b=a+c.
由圖可知,x=1時,y>0,即a+b+c>0,
∴a+a+c+c>0,
∴2a+2c>0,∴a+c>0,故③正確;
④∵a﹣b+c=0,∴b=a+c.
由圖可知,x=2時,y<0,即4a+2b+c<0,
∴4a+2(a+c)+c<0,
∴6a+3c<0,∴2a+c<0,故④正確.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn).
(1)求證:△ABE≌△CDF;
(2)若AC與BD交于點O,求證:AO=CO.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】[知識背景]:
數(shù)軸上,點A,B表示的數(shù)為a,b,則A,B兩點的距離AB=|a﹣b|,A、B的中點P表示的數(shù)為.
[知識運用]:
已知式子(a+4)x3+2x2﹣x+3是關于x的二次三項式,且二次項系數(shù)為b,且a,b在數(shù)軸上對應的點分別為A,B(如圖1),解答下列問題:
(1)a= ,b= ,AB= ;
(2)若點A以每秒2個單位的長度沿數(shù)軸向右運動,t秒后到達原點O,求t的值;
(3)若點A,B都以每秒2個單位長度的速度沿數(shù)軸向右運動到達點M和點N,而O點不動,經(jīng)過t秒后,M,O,N三點中,其中一點是另外兩點的中點,求此時t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩支“徒步隊”到野外沿相同路線徒步,徒步的路程為24千米.甲隊步行速度為4千米/時,乙隊步行速度為6千米/時.甲隊出發(fā)1小時后,乙隊才出發(fā),同時乙隊派一名聯(lián)絡員跑步在兩隊之間來回進行一次聯(lián)絡(不停頓),他跑步的速度為10千米/時.
(1)乙隊追上甲隊需要多長時間?
(2)聯(lián)絡員從出發(fā)到與甲隊聯(lián)系上后返回乙隊時,他跑步的總路程是多少?
(3)從甲隊出發(fā)開始到乙隊完成徒步路程時止,何時兩隊間間隔的路程為1千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某天早晨,王老師從家出發(fā),騎摩托車前往學校,途中在路旁一家飯店吃早餐,如圖所示的是王老師從家到學校這一過程中行駛路程s(千米)與時間t(分)之間的關系.
(1)學校離他家多遠?從出發(fā)到學校,用了多少時間?
(2)王老師吃早餐用了多少時間?
(3)王老師吃早餐以前的速度快還是吃完早餐以后的速度快?最快時速達到多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校學生會調(diào)查了八年級部分學生對“垃圾分類”的了解程度(1)在確定調(diào)查方式時,學生會設計了以下三種方案,其中最具有代表性
的方案是________;
方案一:調(diào)查八年級部分男生;
方案二:調(diào)查八年級部分女生;
方案三:到八年級每個班去隨機調(diào)查一定數(shù)量的學生.
(2)學生會采用最具有代表性的方案進行調(diào)查后,將收集到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖,如圖①、圖②.請你根據(jù)圖中信息,回答下列問題:
①本次調(diào)查學生人數(shù)共有_______名;
②補全圖①中的條形統(tǒng)計圖,圖②中了解一點的圓心角度數(shù)為_______;
③根據(jù)本次調(diào)查,估計該校八年級500名學生中,比較了解“垃圾分類”的學生大約有_______名.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠A=45°,D是AC邊上一點,⊙O經(jīng)過D、A、B三點,OD∥BC.
(1)求證:BC與⊙O相切;
(2)若OD=15,AE=7,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列每一列數(shù),按規(guī)律填空
(1) , ,……
(2) , ,……
(3) , ,……
(4)在(1)列數(shù)中第100個數(shù)是 ,在(2)列數(shù)中第200個數(shù)是 ,在(3)列數(shù)中第199個數(shù)是 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】1876年,美國總統(tǒng)Garfield用如圖所示的兩個全等的直角三角形證明了勾股定理,若圖中,,,則下面結論錯誤的是( )
A. B. C. D. 是等腰直角三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com