【題目】已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α度(0°≤α≤180°)
(1)半圓的直徑落在對角線AC上時(shí),如圖所示,半圓與AB的交點(diǎn)為M,求AM的長;
(2)半圓與直線CD相切時(shí),切點(diǎn)為N,與線段AD的交點(diǎn)為P,如圖所示,求劣弧AP的長;
(3)在旋轉(zhuǎn)過程中,半圓弧與直線CD只有一個(gè)交點(diǎn)時(shí),設(shè)此交點(diǎn)與點(diǎn)C的距離為d,直接寫出d的取值范圍.
【答案】(1)AM=;(2)=π;(3)4-≤d<4或d=4+.
【解析】
(1)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據(jù)相似三角形的性質(zhì)可求出AM的長度;
(2)連接OP、ON,過點(diǎn)O作OG⊥AD于點(diǎn)G,則四邊形DGON為矩形,進(jìn)而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=1可得出∠OAG=60°,進(jìn)而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;
(3)由(2)可知:△AOP為等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OG、DN的長度,進(jìn)而可得出CN的長度,畫出點(diǎn)B′在直線CD上的圖形,在Rt△AB′D中(點(diǎn)B′在點(diǎn)D左邊),利用勾股定理可求出B′D的長度進(jìn)而可得出CB′的長度,再結(jié)合圖形即可得出:半圓弧與直線CD只有一個(gè)交點(diǎn)時(shí)d的取值范圍.
(1)在圖2中,連接B′M,則∠B′MA=90°.
在Rt△ABC中,AB=4,BC=3,
∴AC=5.
∵∠B=∠B′MA=90°,∠BCA=∠MAB′,
∴△ABC∽△AMB′,
∴=,即=,
∴AM=;
(2)在圖3中,連接OP、ON,過點(diǎn)O作OG⊥AD于點(diǎn)G,
∵半圓與直線CD相切,
∴ON⊥DN,
∴四邊形DGON為矩形,
∴DG=ON=2,
∴AG=AD-DG=1.
在Rt△AGO中,∠AGO=90°,AO=2,AG=1,
∴∠AOG=30°,∠OAG=60°.
又∵OA=OP,
∴△AOP為等邊三角形,
∴==π.
(3)由(2)可知:△AOP為等邊三角形,
∴DN=GO=OA=,
∴CN=CD+DN=4+.
當(dāng)點(diǎn)B′在直線CD上時(shí),如圖4所示,
在Rt△AB′D中(點(diǎn)B′在點(diǎn)D左邊),AB′=4,AD=3,
∴B′D==,
∴CB′=4-.
∵AB′為直徑,
∴∠ADB′=90°,
∴當(dāng)點(diǎn)B′在點(diǎn)D右邊時(shí),半圓交直線CD于點(diǎn)D、B′.
∴當(dāng)半圓弧與直線CD只有一個(gè)交點(diǎn)時(shí),4-≤d<4或d=4+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知AB⊥BC于點(diǎn)B,底座BC的長為1米,底座BC與支架AC所成的角∠ACB=60°,點(diǎn)H在支架AF上,籃板底部支架EH∥BC,EF⊥EH于點(diǎn)E,已知AH長米,HF長米,HE長1米.
(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).
(2)求籃板底部點(diǎn)E到地面的距離.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn)若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動點(diǎn),則周長的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解學(xué)生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機(jī)抽取了本校部分學(xué)生進(jìn)行問卷調(diào)查(必選且只選一類節(jié)目),將調(diào)查結(jié)果進(jìn)行整理后,繪制了如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,其中喜愛體育節(jié)目的學(xué)生人數(shù)比喜愛戲曲節(jié)目的學(xué)生人數(shù)的3倍還多1人.
請根據(jù)所給信息解答下列問題:
(1)求本次抽取的學(xué)生人數(shù).
(2)補(bǔ)全條形圖,在扇形統(tǒng)計(jì)圖中的橫線上填上正確的數(shù)值,并直接寫出“體育”對應(yīng)的扇形圓心角的度數(shù).
(3)該校有3000名學(xué)生,求該校喜愛娛樂節(jié)目的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,數(shù)軸上三個(gè)點(diǎn)A、O、P,點(diǎn)O是原點(diǎn),固定不動,點(diǎn)A和B可以移動,點(diǎn)A表示的數(shù)為,點(diǎn)B表示的數(shù)為.
(1)若A、B移動到如圖所示位置,計(jì)算的值.
(2)在(1)的情況下,B點(diǎn)不動,點(diǎn)A向左移動3個(gè)單位長,寫出A點(diǎn)對應(yīng)的數(shù),并計(jì)算.
(3)在(1)的情況下,點(diǎn)A不動,點(diǎn)B向右移動15.3個(gè)單位長,此時(shí)比大多少?請列式計(jì)算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】濟(jì)南某中學(xué)在參加“創(chuàng)文明城,點(diǎn)贊泉城”書畫比賽中,楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班(用A,B,C,D表示),對征集到的作鼎的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.
請根據(jù)以上信息,回答下列問題:
(l)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);
(2)請補(bǔ)充完整條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中C班作品數(shù)量所對應(yīng)的圓心角度數(shù) .
(3)請估計(jì)全校共征集作品的什數(shù).
(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)邊長為 4cm 的等邊三角形 ABC 與⊙O 等高, 如圖放置,⊙O 與 BC 相切于點(diǎn) C,⊙O 與 AC 相交于點(diǎn)E,則 CE 的長為 _____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,Rt△ACB 中,∠C=90°,點(diǎn)D在AC上,∠CBD=∠A,過A、D兩點(diǎn)的圓的圓心O在AB上.
(1)利用直尺和圓規(guī)在圖1中畫出⊙O(不寫作法,保留作圖痕跡,并用黑色水筆把線條描清楚);
(2)判斷BD所在直線與(1)中所作的⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)設(shè)⊙O交AB于點(diǎn)E,連接DE,過點(diǎn)E作EF⊥BC,F為垂足,若點(diǎn)D是線段AC的黃金分割點(diǎn)(即),如圖2,試說明四邊形DEFC是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請?jiān)趫D中,畫出△ABC向左平移6個(gè)單位長度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請?jiān)趫D中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com