如圖所示的拱橋,用
AB
表示橋拱.
(1)若
AB
所在圓的圓心為O,EF是弦CD的垂直平分線,請你利用尺規(guī)作圖,找出圓心O.(不寫作法,但要保留作圖
痕跡)
(2)若拱橋的跨度(弦AB的長)為16m,拱高(
AB
的中點到弦AB的距離)為4m,求拱橋的半徑R.
精英家教網(wǎng)
分析:(1)作弦AB的垂直平分線,交于G,交AB于點H,交CD的垂直平分線EF于點O,則點O即為所求作的圓心;
(2)首先連接OA,由(1)可得:△AOH為直角三角形,H是AB的中點,GH=4,即可求得AH的長,然后在Rt△AOH中,由勾股定理得,OA2=AH2+OH2,即可求得拱橋的半徑R.
解答:精英家教網(wǎng)解:(1)作弦AB的垂直平分線,交于G,交AB于點H,交CD的垂直平分線EF于點O,則點O即為所求作的圓心.(如圖1)(2分)

(2)連接OA.(如圖2)
由(1)中的作圖可知:△AOH為直角三角形,H是AB的中點,GH=4,
∴AH=
1
2
AB=8.(3分)
∵GH=4,
∴OH=R-4.
在Rt△AOH中,由勾股定理得,OA2=AH2+OH2,
∴R2=82+(R-4)2.(4分)
解得:R=10.(5分)
∴拱橋的半徑R為10m.
點評:此題考查了垂徑定理的應(yīng)用.此題難度不大,解題的關(guān)鍵是方程思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(北師大版)連接著漢口集家咀的江漢三橋(晴川橋),是一座下承式鋼管混凝土系桿拱橋.它猶如一道美麗的彩虹跨越漢江,是江城武漢的一道靚麗景觀.橋的拱肋ACB視為拋物線的一部分,橋面(視為水平的)與拱肋用垂直于橋面的系桿連接,相鄰系桿之間的間距均為5米(不考慮系桿的粗細),拱肋的跨度AB為280米,距離拱肋的右端70米處的系桿EF的長度為42米.以AB所在直線為x軸,拋物線的對稱軸為y軸建立如圖②所示的平面直角坐標(biāo)系.
精英家教網(wǎng)
(1)求拋物線的解析式;
(2)正中間系桿OC的長度是多少米?是否存在一根系桿的長度恰好是OC長度的一半?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

圖中是一座下承式鋼管混凝土系桿拱橋,橋的拱肋ACB可視為拋物線的一部分,橋面(視為水平的)與拱肋用垂直于橋面的系桿連接,拱肋的跨度AB為280米,正中間系桿OC的長度為56米.以AB所在直線為x軸,OC所在直線為y軸建立如圖所示的平面直角坐標(biāo)系.
(1)求與該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若相鄰系桿之間的間距均為5米(不考慮系桿的粗細),則是否存在一根系桿的長度恰好是OC長度的一半?請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示的拱橋,用數(shù)學(xué)公式表示橋拱.
(1)若數(shù)學(xué)公式所在圓的圓心為O,EF是弦CD的垂直平分線,請你利用尺規(guī)作圖,找出圓心O.(不寫作法,但要保留作圖
痕跡)
(2)若拱橋的跨度(弦AB的長)為16m,拱高(數(shù)學(xué)公式的中點到弦AB的距離)為4m,求拱橋的半徑R.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007-2008學(xué)年北京市昌平區(qū)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示的拱橋,用表示橋拱.
(1)若所在圓的圓心為O,EF是弦CD的垂直平分線,請你利用尺規(guī)作圖,找出圓心O.(不寫作法,但要保留作圖
痕跡)
(2)若拱橋的跨度(弦AB的長)為16m,拱高(的中點到弦AB的距離)為4m,求拱橋的半徑R.

查看答案和解析>>

同步練習(xí)冊答案