【題目】如圖△ABC,AB=AC,將△ABC繞點A順時針旋轉得到△AEF,連結BE、CF相交于點D.
(1)求證:BE=CF;
(2)已知四邊形ACDE是菱形,∠BAC=45°,AB=AC=1.
①求旋轉角 ∠BAE的度數;
②求BD的長.
【答案】(1)證明見解析;(2)①90°;②
【解析】
(1)先由旋轉的性質得AE=AB,AF=AC,∠EAF=∠BAC,則∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,于是根據旋轉的定義,△AEB可由△AFC繞點A按順時針方向旋轉得到,然后根據旋轉的性質得到BE=CD;
(2)①由菱形的性質得到DE=AE=AC=AB=1,AC∥DE,根據等腰三角形的性質得∠AEB=∠ABE,根據平行線得性質得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判斷△ABE為等腰直角三角形,即可求出∠BAE的度數;
②由△ABE為等腰直角三角形,可求出BE=AC=再利用BD=BE-DE即可求解.
(1)證明:∵△AEF是由△ABC繞點A按順時針方向旋轉得到的,
∴AE=AB,AF=AC,∠EAF=∠BAC,
∴∠EAF+∠BAF=∠BAC+∠BAF,
即∠EAB=∠FAC,
∵AB=AC,
∴AE=AF,
∴△AEB可由△AFC繞點A按順時針方向旋轉得到,
∴BE=CF;
(2)解:①∵四邊形ACDE為菱形,AB=AC=1,
∴DE=AE=AC=AB=1,AC∥DE,
∴∠AEB=∠ABE,∠ABE=∠BAC=45°,
∴∠AEB=∠ABE=45°,
∴△ABE為等腰直角三角形,
∴∠BAE=90°;
②∵△ABE為等腰直角三角形,
∴BE=AC=,
∴BD=BEDE=1.
科目:初中數學 來源: 題型:
【題目】實驗中學課外活動小組準備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長度為30米的籬笆圍成已知墻長18米,設這個苗圃園垂直于墻的一邊為x米.
(1)若平行于墻的一邊的長為y米,直接寫出y與x之間的函數關系,以及其自變量的取值范圍.
(2)若垂直于墻的一邊的長不小于8米,當x為多少米時,這個苗圃的面積最大?求出這個最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人在一條直線道路上分別從相距1500米的A,B 兩點同時出發(fā),相向而行,當兩人相遇后,甲繼續(xù)向點B前進(甲到達點B時停止運動),乙也立即向B點返回.在整個運動過程中,甲、乙均保持勻速運動.甲、乙兩人之間的距離y(米)與乙運動的時間x(秒) 之間的關系如圖所示.則甲到B點時,乙距B點的距離是________米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數和,以下說法:
①它們的圖象都是開口向上;②它們的對稱軸都是y軸,頂點坐標都是原點(0,0);③當x>0時,它們的函數y都是隨x的增大而增大;④它們的開口的大小是一樣的.
其中正確的說法有_______個.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點 O 是△ABC 的邊 AB 上一點,以 OB 為半徑的⊙O 交 BC 于點 D,過點 D 的切線交 AC 于點 E,且 DE⊥AC.
(1)證明:AB=AC;
(2)設 AB=cm,BC=2cm,當點 O 在 AB 上移動到使⊙O 與邊 AC 所在直線相切時, 求⊙O 的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某校廣場有一段25米長的舊圍欄,現打算利用該圍欄的一部分(或全部)為一邊,圍成一塊100平方米的長方形草坪(如圖CDEF,CD<CF)已知整修舊圍欄的價格是每米1.75元,建新圍欄的價格是4.5元.若CF=x米,計劃修建費為y元.
(1)求y與x的函數關系式,并指出x的取值范圍;
(2)若計劃修建費為150元,能否完成該草坪圍欄的修建任務?若能完成,請算出利用舊圍欄多少米;若不能完成,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店經銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調查發(fā)現,這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關系:y=-x+60(30≤x≤60).
設這種雙肩包每天的銷售利潤為w元.
(1)求w與x之間的函數解析式;
(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應定為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計算結果精確到0.1m,參考數據sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
(1)當吊臂底部A與貨物的水平距離AC為5m時,吊臂AB的長為多少m.
(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com