【題目】如圖1,在平面直角坐標系中,拋物線經過點和點.
(1)求拋物線的解析式及頂點的坐標;
(2)點是拋物線上、之間的一點,過點作軸于點,軸,交拋物線于點,過點作軸于點,當矩形的周長最大時,求點的橫坐標;
(3)如圖2,連接、,點在線段上(不與、重合),作,交線段于點,是否存在這樣點,使得為等腰三角形?若存在,求出的長;若不存在,請說明理由.
【答案】(1);;(2)點的橫坐標為;(3)AN=1或.
【解析】
(1)根據和點可得拋物線的表達式為,可知對稱軸為x=-2,代入解析式即可得出頂點坐標;(2)設點,則,,可得矩形的周長,即可求解;(3)由D為頂點,A、B為拋物線與x軸的交點可得AD=BD,即可證明∠DAB=∠DBA,根據,利用角的和差關系可得,即可證明,可得;分、、,三種情況分別求解即可.
(1)∵拋物線經過點和點.
∴拋物線的表達式為:,
∴對稱軸為:x==-2,
把x=-2代入得:y=4,
∴頂點.
(2)設點,
則,,
矩形的周長,
∵,
∴當時,矩形周長最大,此時,點的橫坐標為.
(3)∵點D為拋物線頂點,A、B為拋物線與x軸的交點,
∴AD=BD,
∴∠DAB=∠DBA,
∵,,,
∴,
∴,
∴,
∵D(-2,4),A(-5,0),B(1,0)
∴,,
①當時,
∵∠NAM=∠MBD,∠NMA=∠MBD,
∴,
∴,
∴=AB-AM=1;
②當時,則,
∵∠DMN=∠DBA,
∴∠NDM=∠DBA,
∵∠DAB是公共角,
∴,
∴,
∴,即:,
∴,
∵,即,
∴;
③當時,
∵,而,
∴,
∴;
綜上所述:或.
科目:初中數學 來源: 題型:
【題目】曉東在解一元二次方程時,發(fā)現有這樣一種解法:
如:解方程.
解:原方程可變形,得
.
,
,
直接開平方并整理,得,.
我們稱曉東這種解法為“平均數法”.
(1)下面是曉東用“平均數法”解方程時寫的解題過程.
.
,
.
直接開平方并整理,得,.
上述過程中的“□”,“○”,“☆”,“¤”表示的數分別為________,________,________,________.
(2)請用“平均數法”解方程:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線與軸交于、兩點,,交軸于點,對稱軸是直線.
(1)求拋物線的解析式及點的坐標;
(2)連接,是線段上一點,關于直線的對稱點正好落在上,求點的坐標;
(3)動點從點出發(fā),以每秒2個單位長度的速度向點運動,過作軸的垂線交拋物線于點,交線段于點.設運動時間為秒.
①若與相似,請直接寫出的值;
②能否為等腰三角形?若能,求出的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,地物線點:(、、均不為0)的頂點為,與軸的交點為,我們稱以為頂點,對稱軸是軸且過點的拋物線為拋物線的衍生拋物線,直線為拋物線的衍生直線.
(1)求拋物線的衍生拋物線和衍生直線的解析式;
(2)若一條拋物線的衍生拋物線和衍生直線分別是和,求這條拋物線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AB=4,F是線段AC上一點,過點A的⊙F交AB于點D,E是線段BC上一點,且ED=EB,則EF的最小值為 ( )
A. 3 B. 2 C. D. 2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,∠BAC的平分線交⊙O于點D,交BC于點E(BE>EC),且BD=2.過點D作DF∥BC,交AB的延長線于點F.
(1)求證:DF為⊙O的切線;
(2)若∠BAC=60°,DE=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于題目:“如圖1,平面上,正方形內有一長為、寬為的矩形,它可以在正方形的內部及邊界通過移轉(即平移或旋轉)的方式,自由地從橫放移轉到豎放,求正方形邊長的最小整數.”甲、乙、丙作了自認為邊長最小的正方形,先求出該邊長,再取最小整數.
甲:如圖2,思路是當為矩形對角線長時就可移轉過去;結果取.
乙:如圖3,思路是當x為矩形外接圓直徑長時就可移轉過去;結果取n=14.
丙:如圖4,思路是當為矩形的長與寬之和的倍時就可移轉過去;結果取.
下列正確的是( )
A.甲的思路錯,他的值對
B.乙的思路和他的值都對
C.甲和丙的值都對
D.甲、乙的思路都錯,而丙的思路對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,四邊形為正方形,點的坐標為,動點沿邊從向以每秒的速度運動,同時動點沿邊從向以同樣的速度運動,連接、交于點.
(1)試探索線段、的關系,寫出你的結論并說明理由;
(2)連接、,分別取、、、的中點、、、,則四邊形是什么特殊平行四邊形?請在圖①中補全圖形,并說明理由.
(3)如圖②當點運動到中點時,點是直線上任意一點,點是平面內任意一點,是否存在點使以、、、為頂點的四邊形是菱形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com