【題目】如圖,在平面直角坐標(biāo)系中,以點為圓心,作軸于、兩點,交軸于、兩點,連結(jié)并延長交于點,連結(jié)軸于點,連結(jié),.

1)求弦的長;

2)求直線的函數(shù)解析式;

3)連結(jié),求的面積.

【答案】16 ;(2;(3

【解析】

1)求出∠AMO的度數(shù),得出等邊三角形AMC,求出OM,根據(jù)勾股定理求出OA,根據(jù)垂徑定理求出AB即可;

2)連接PB,求出PB的值,即可得出P的坐標(biāo),根據(jù)MAC是等邊三角形可得C的坐標(biāo),然后利用待定系數(shù)法求解即可;

3)分別求出AMCCMP的面積,相加即可得出答案.

解:(1)∵CDABCD為直徑,

,

∴∠AMO2P2BDC60°,

x軸⊥y軸,

∴∠MAO30°,

AM2OM,AO

AB2AO6;

2)連接PB

AP為直徑,

PBAB,

PBAP

P3,),

MAMC,∠AMO60°

∴△MAC是等邊三角形,

AOMC

OMOC,

C0),

設(shè)直線PC的解析式是ykxb,代入P3,),C0),得:

解得:,

∴直線的函數(shù)解析式為:;

3)∵CMAMAOBO3,

SACPSACMSCPM,

ACP的面積是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個同學(xué)做了一個數(shù)字游戲:拿出三張正面寫有數(shù)字,23且背面完全相同的卡片,將這三張卡片背面朝上洗勻后,甲先隨機抽取一張,將所得數(shù)字作為的值,然后將卡片放回并洗勻,乙再從這三張卡片中隨機抽取一張,將所得數(shù)字作為的值,兩次結(jié)果記為.

(1)請你幫他們用畫樹狀圖或列表的方法表示所有可能出現(xiàn)的結(jié)果;

(2)若將記錄結(jié)果看成平面直角坐標(biāo)系中的一點,求是第一象限內(nèi)的點的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD中,BC2AB,點EBC邊上,連接DEAE,若EA平分∠BED,則的值為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市茶葉專賣店銷售某品牌茶葉,其進(jìn)價為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:

1)每千克茶葉應(yīng)降價多少元?

2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的 幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,,的中點,將繞點旋轉(zhuǎn),當(dāng)(即)與交于一點,)同時與交于一點時,點,和點構(gòu)成,在此過程中,周長的最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)h為常數(shù)),在自變量的值滿足的情況下,與其對應(yīng)的函數(shù)值的最大值為0,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,B點的坐標(biāo)為(3,0),與y軸交于點C0,﹣3),點P是直線BC下方拋物線上的任意一點,過點P作平行于y軸的直線PM,交線段BCM,當(dāng)PCM是以PM為腰的等腰三角形時,點P的坐標(biāo)是( 。

A.2,-3)或(+1—2B.2,-3)或(,-1-2

C.2-3)或(-1-2D.2,-3)或(3-,2-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE90°,點FBE中點,連結(jié)DF,CF

1)如圖1,點DAC上,請你判斷此時線段DFCF的關(guān)系,并證明你的判斷;

2)如圖2,在(1)的條件下將△ADE繞點A順時針旋轉(zhuǎn)45度時,若ADDE2,AB6,求此時線段CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+8ax(a>0)x軸交于O,A兩點,頂點為M,對稱軸與x軸交于H,與過O,A,M三點的⊙Q交于點B,⊙Q的半徑為5,點C從點B出發(fā),沿著圓周順時針向點M運動,射線MCx軸交于D,與拋物線交于E,過點EME的垂線交拋物線的對稱軸于點F.

(1)求拋物線的解析式;

(2)當(dāng)點C的運動路徑長為 時,求證:HD=2HA.

(3)在點C運動過程中.是否存在這樣的位置,使得以點M,E,F為頂點的三角形與AHQ相似?若存在,求出此位置時點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案