【題目】春節(jié)期間,小明一家乘坐飛機(jī)前往某市旅游,計劃第二天租出租車自駕游.
公司 | 租車收費(fèi)方式 |
甲 | 每日固定租金80元,另外每小時收費(fèi)15 元. |
乙 | 無固定租金,直接以租車時間計費(fèi),每小時租費(fèi)30元 |
(1)設(shè)租車時間為x小時, 租用甲公司的車所需費(fèi)用為元,租用乙公司的車所需費(fèi)用為元,分別求出與x之間的關(guān)系式:
(2)請你幫助小明計算并選擇哪個公司租車合算.
【答案】(1)y1=80+15x(0<x≤24);y2=30x(0<x≤24);(2)當(dāng)x<時,選擇乙公司合算;當(dāng)x=時,選擇兩家公司的費(fèi)用相同;當(dāng)x>時,選擇甲公司合算.
【解析】
(1)根據(jù)表格中兩家公式給出的租車收費(fèi)方式,可得出y1、y2與x之間的關(guān)系式;
(2)求出當(dāng)y2=y1時x的值,結(jié)合一次項(xiàng)系數(shù)的大小,即可找出合適的租車方案.
解:(1)根據(jù)題意得:y1=80+15x(0<x≤24);y2=30x(0<x≤24).
(2)當(dāng)y2=y1時,有30x=(80+15x),
解得:x=.
∵30>15,
∴當(dāng)x<時,選擇乙公司合算;當(dāng)x=時,選擇兩家公司的費(fèi)用相同;當(dāng)x>時,選擇甲公司合算.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩汽車從A市出發(fā),丙汽車從B市出發(fā),甲車每小時行駛40千米,乙車每小時行駛45千米,丙車每小時行駛50千米,如果三輛汽車同時相向而行,丙車遇到乙車后10分鐘才能遇到甲車,問何時甲丙兩車相距15千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,AD垂直于過點(diǎn)C的切線,垂足為D,且∠BAD=80°,則∠DAC的度數(shù)是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 AB與坐標(biāo)軸交與點(diǎn), 動點(diǎn)P沿路線運(yùn)動.
(1)求直線AB的表達(dá)式;
(2)當(dāng)點(diǎn)P在OB上,使得AP平分時,求此時點(diǎn)P的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校260名學(xué)生參加植樹活動,要求每人植4~7棵,活動結(jié)束后隨機(jī)抽查了若干名學(xué)生每人的植樹量,并分為四種類型, A:4棵;B:5棵;C:6棵;D:7棵,將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),請回答下列問題:
(1)在這次調(diào)查中D類型有多少名學(xué)生?
(2)寫出被調(diào)查學(xué)生每人植樹量的眾數(shù)、中位數(shù);
(3)求被調(diào)查學(xué)生每人植樹量的平均數(shù),并估計這260名學(xué)生共植樹多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+x+c(a≠0)與x軸交于點(diǎn)A,B兩點(diǎn),
其中A(-1,0),與y軸交于點(diǎn)C(0,2).
(1)求拋物線的表達(dá)式及點(diǎn)B坐標(biāo);
(2)點(diǎn)E是線段BC上的任意一點(diǎn)(點(diǎn)E與B、C不重合),過點(diǎn)E作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G.
①設(shè)點(diǎn)E的橫坐標(biāo)為m,用含有m的代數(shù)式表示線段EF的長;
②線段EF長的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①垂直于同一直線的兩條直線互相平行;②兩個無理數(shù)的和是無理數(shù);③點(diǎn)一定不在第四象限;④平方根等于本身的數(shù)是或;⑤若點(diǎn)的坐標(biāo)滿足,則點(diǎn)落在原點(diǎn)上;⑥如果兩個角的角平分線互為反向延長線,則這兩個角為對頂角.正確個數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C>∠B,AE平分∠BAC,F(xiàn)為射線AE上一點(diǎn)(不與點(diǎn)E重合),且FD⊥BC于D;
(1)如果點(diǎn)F與點(diǎn)A重合,且∠C=50°,∠B=30°,如圖1,求∠EFD的度數(shù);
(2)如果點(diǎn)F在線段AE上(不與點(diǎn)A重合),如圖2,問∠EFD與∠C﹣∠B有怎樣的數(shù)量關(guān)系?并說明理由.
(3)如果點(diǎn)F在△ABC外部,如圖3,此時∠EFD與∠C﹣∠B的數(shù)量關(guān)系是否會發(fā)生變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要得到AB∥CD,只需要添加一個條件,這個條件不可以是( )
A. ∠1=∠3 B. ∠B+∠BCD=180°
C. ∠2=∠4 D. ∠D+∠BAD=180°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com