【題目】1)如圖,已知矩形中,點是邊上的一動點(不與點、重合),過點于點,于點,于點,猜想線段三者之間具有怎樣的數(shù)量關(guān)系,并證明你的猜想;

2)如圖,若點在矩形的邊的延長線上,過點于點,的延長線于點于點,則線段三者之間具有怎樣的數(shù)量關(guān)系,直接寫出你的結(jié)論;

3)如圖,是正方形的對角線,上,且,連接,點上任一點,與點,于點,猜想線段之間具有怎樣的數(shù)量關(guān)系,直接寫出你的猜想.

【答案】1,見解析;(2或者,見解析;(3.

【解析】

1)過點作,先得出四邊形是矩形,再證明四邊形是矩形,證明,求出即可;

2)過C點作CO垂直EF,可得矩形HCOF,因為HC=FO,只要證明EO=EG,最后根據(jù)AAS證明.

3)連接AC交BD于O,過點E作EH⊥AC,證明矩形FOHE,證明EG=CH,根據(jù)AAS證明.

1)答:

證明:如圖1,過點作

,

四邊形是矩形.

四邊形是矩形,

,且互相平分

∴∠DBC=∠ACB

,

,

,

∴EG=CN

;

2或者

過C點作CO垂直EF,

,CO⊥EF,

∴矩形COHF

∴CE∥BD,CH=DO

∴∠DBC=∠OCE

∵矩形ABCD

∴∠DBC=∠ACB

∵∠ECG=∠ACB

∴∠ECG=∠OCE

∵CO⊥EF,

∴∠G=∠COE

∵CE=CE

∴EO=EG

或者

3.

連接AC交BD于O,過點E作EH⊥AC,

∵正方形ABCD

∴FO⊥AC,

∵EH⊥AC

∴矩形FEOH,∠EHC=90°

∵EG⊥BC,EF=OH

∴∠EGC=90°=∠EHC

∴EH∥BD

∴∠HEC=∠FLE

∵BL=BC

∴∠GCE=∠FLE

∴∠GCE=∠HEC

∵EC=EC

∴HC=GE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,O的直徑AB=12,P是弦BC上一動點(與點B,C不重合),ABC=30°,過點P作PDOP交O于點D.

(1)如圖2,當(dāng)PDAB時,求PD的長;

(2)如圖3,當(dāng)時,延長AB至點E,使BE=AB,連接DE.

求證:DE是O的切線;

求PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,EFABCD的對角線AC上的兩點,且AF=CE.

⑴求證:CDFABE

⑵求證:EDBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩個工程隊分別同時開挖兩條600米長的管道,所挖管道長度(米)與挖掘時間(天)之間的關(guān)系如圖所示,則下列說法中:

①甲隊每天挖100米;②乙隊開挖兩天后,每天挖50米;③甲隊比乙隊提前1天完成任務(wù);④當(dāng)時,甲乙兩隊所挖管道長度相同,不正確的個數(shù)有(

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地重視生態(tài)建設(shè),大力發(fā)展旅游業(yè),各地旅游團紛沓而至,某旅游團上午6時從旅游館出發(fā),乘汽車到距離的旅游景點觀光,該汽車離旅游館的距離與時間的關(guān)系可以用如圖的折線表示.根據(jù)圖象提供的有關(guān)信息,解答下列問題:

1)求該團旅游景點時的平均速度是多少?

2)該團在旅游景點觀光了多少小時?

3)求該團返回到賓館的時刻是幾時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設(shè)計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.

(1)若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;

(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA是⊙M的直徑,點Bx軸上,連接AB交⊙M于點C.

(1)若點A的坐標(biāo)為(0,2),ABO=30°,求點B的坐標(biāo).

(2)若DOB的中點,求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8個同樣大小的小正方體搭成如圖所示的幾何體,請按照要求解答下列問題:

1)從正面、左面、上面觀察如圖所示的幾何體,分別畫出所看到的幾何體的形狀圖;

2)如果在這個幾何體上再擺放一個相同的小正方體,并保持這個幾何體從上面看和從左面看到的形狀圖不變.

①添加小正方體的方法共有_________種;

②請畫出兩種添加小正方體后,從正面看到的幾何體的形狀圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

同步練習(xí)冊答案