【題目】從﹣2,﹣1,0,1,2這5個數(shù)中,隨機抽取一個數(shù)記為a,則使關于x的不等式組 有解,且使關于x的一元一次方程 +1= 的解為負數(shù)的概率為

【答案】
【解析】解:∵使關于x的不等式組 有解的a滿足的條件是a>﹣ , 使關于x的一元一次方程 +1= 的解為負數(shù)的a的a< ,
∴使關于x的不等式組 有解,且使關于x的一元一次方程 +1= 的解為負數(shù)的a的值為﹣1,0,1,三個數(shù),
∴使關于x的不等式組 有解,且使關于x的一元一次方程 +1= 的解為負數(shù)的概率為 ,
所以答案是:
【考點精析】掌握一元一次不等式組的解法和概率公式是解答本題的根本,需要知道解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 );一般地,如果在一次試驗中,有n種可能的結果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率為P(A)=m/n.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB=6,AD=9,BAD的平分線交BC于點E,交DC的延長線于點F,BGAE,垂足為G.若BG=4,則CEF的面積是(

A. B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年某月的月歷上圈出了相鄰的三個數(shù)a、b、c,并求出了它們的和為39,這三個數(shù)在月歷中的排布不可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程

①(x﹣3)﹣3(3x﹣1)=1

②老師在黑板上出了一道解方程的題=1﹣,小明馬上舉手,要求到黑板上做,他是這樣做的:

4(2x﹣1)=1﹣3(x+2)…①

8x﹣4=1﹣3x﹣6…②

8x+3x=1﹣6+4…③

11x=﹣1…④

x=﹣…⑤

老師說:小明解一元一次方程的一般步驟都知道卻沒有掌握好,因此解題時有一步出現(xiàn)了錯誤,請你指出他錯在那一步(填編號),并寫出正確的解答過程.

=1﹣

③當m為何值時,關于x的方程5m+3x=1+x的解比關于x的方程2x+m=3m的解小2?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B兩種機器人都被用來搬運化工原料,A型機器人比B型機器人每小時多搬運40千克,A型機器人搬運1200千克所用時間與B型機器人搬運800千克所用時間相等.設B型機器人每小時搬運化工原料x千克,根據(jù)題意可列方程為(
A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=14cm,AD=8cm,動點P沿AB邊從點A開始,向點B1cm/s的速度運動;動點Q從點D開始沿DA→AB邊,向點B2cm/s的速度運動.P,Q同時開始運動,當點Q到達B點時,點P和點Q同時停止運動,用t(s)表示運動的時間.

(1)當點QDA邊上運動時,t為何值,使AQ=AP?

(2)當t為何值時,AQ+AP等于長方形ABCD周長的?

(3)當t為何值時,點Q能追上點P?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們把對角線互相垂直的四邊形叫做垂美四邊形.

(1)(概念理解)在平行四邊形、矩形、菱形、正方形中,一定是垂美四邊形的是___________.

(2)(性質(zhì)探究)如圖2,試探索垂美四邊形ABCD的兩組對邊AB,CD與BC ,AD之間的數(shù)量關系,寫出證明過程。

(3)(問題解決)如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外做正方形ACFG和正方形ABDE,連接CE,BG,GE, 已知AC=,BC=1 求GE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將正方體骰子(相對面上的點數(shù)分別為1和6、2和5、3和4)放置于水平桌面上,如圖1。在圖2中,將骰子向右翻滾90°,然后在桌面上按逆時針方向旋轉(zhuǎn)90°,則完成一次變換。若骰子的初始位置為圖1所示的狀態(tài),那么按上述規(guī)則連續(xù)完成14次變換后,骰子朝上一面的點數(shù)是_____________________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:(1)7(2x–1)–3(4x–1)=4(3x+2)–1;

(2).

查看答案和解析>>

同步練習冊答案