【題目】下列命題中,假命題的是( 。

A. 四個(gè)角都相等的四邊形是矩形

B. 對(duì)角線互相平分且垂直的四邊形是菱形

C. 對(duì)角線互相垂直且相等的四邊形是正方形

D. 對(duì)角線相等的平行四邊形是矩形

【答案】C

【解析】

根據(jù)平行四邊形,矩形,菱形和正方形的判定進(jìn)行判斷即可.

解:A、四邊形的內(nèi)角和為360°,

∵四個(gè)角都相等,

∴四邊形的每個(gè)角都等于90°,

∴此四邊形是矩形,

故該命題是真命題;

B、對(duì)角線互相平分的四邊形是平行四邊形,

對(duì)角線垂直的平行四邊形是菱形,

故該命題是真命題;

C、對(duì)角線互相平分、互相垂直且相等的四邊形才是正方形,

故該命題是假命題;

D、對(duì)角線相等的平行四邊形是矩形,是真命題.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,對(duì)角線BD平分∠ABC,P是BD上一點(diǎn),過(guò)點(diǎn)P作PM⊥AD,PN⊥CD,垂足分別為M,N.

(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)全等的直角三角形ABC和DEF重疊在一起,其中∠A=60°,AC=4.固定△ABC不動(dòng),將△DEF進(jìn)行如下操作:

(1)操作發(fā)現(xiàn)

如圖①,DEF沿線段AB向右平移(D點(diǎn)在線段AB內(nèi)移動(dòng)),連接DC,CF,FB,四邊形CDBF的形狀在不斷的變化,那么它的面積大小是否變化呢?如果不變化,請(qǐng)求出其面積.

(2)猜想論證

如圖②,當(dāng)D點(diǎn)移到AB的中點(diǎn)時(shí),請(qǐng)你猜想四邊形CDBF的形狀,并說(shuō)明理由.

(3)拓展探究

如圖③,DEFD點(diǎn)固定在AB的中點(diǎn),然后繞D點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)DEF,使DF落在AB邊上,此時(shí)F點(diǎn)恰好與B點(diǎn)重合,連接AE,求sin

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是矩形ABCD的對(duì)角線AC的中點(diǎn),M是AD的中點(diǎn),若AB=5,AD=12,則四邊形ABOM的周長(zhǎng)為(

A.17
B.18
C.19
D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“明天是晴天”這個(gè)事件是( 。

A.確定事件B.不可能事件C.必然事件D.不確定事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形兩邊的長(zhǎng)是25,第三邊的長(zhǎng)是方程x2﹣12x+35=0的根,則第三邊的長(zhǎng)為(  )

A. 2 B. 5 C. 7 D. 57

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)為(1,n),y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)).有下列結(jié)論:①當(dāng)x3時(shí),y0;3a+b01≤a≤;≤n≤4.其中正確的是(

A. ①② B. ③④ C. ①③ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是矩形,把△ACD沿AC折疊到△ACD′,AD′與BC交于點(diǎn)E,若AD=4,DC=3,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把拋物線y=(x12+2沿x軸向右平移2個(gè)單位后,再沿y軸向下平移3個(gè)單位,得到的拋物線解析式為( 。

A.y=(x32+1B.y=(x+121C.y=(x321D.y=(x+122

查看答案和解析>>

同步練習(xí)冊(cè)答案