【題目】兩個(gè)全等的直角三角形ABC和DEF重疊在一起,其中∠A=60°,AC=4.固定△ABC不動(dòng),將△DEF進(jìn)行如下操作:

(1)操作發(fā)現(xiàn)

如圖①DEF沿線段AB向右平移(D點(diǎn)在線段AB內(nèi)移動(dòng)),連接DCCF,FB,四邊形CDBF的形狀在不斷的變化,那么它的面積大小是否變化呢?如果不變化,請(qǐng)求出其面積.

(2)猜想論證

如圖②,當(dāng)D點(diǎn)移到AB的中點(diǎn)時(shí),請(qǐng)你猜想四邊形CDBF的形狀,并說明理由.

(3)拓展探究

如圖③DEFD點(diǎn)固定在AB的中點(diǎn),然后繞D點(diǎn)按順時(shí)針方向旋轉(zhuǎn)DEF,使DF落在AB邊上,此時(shí)F點(diǎn)恰好與B點(diǎn)重合,連接AE,求sin

【答案】(1)不變,8 (2)菱形,理由見解析;(3)

【解析】(1)不變 8 (2)菱形,理由略) (3)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會(huì)為了解環(huán)保知識(shí)的普及情況,從該校隨機(jī)抽取部分學(xué)生,對(duì)他們進(jìn)行了垃圾分類了解程度的調(diào)查,根調(diào)查收集的數(shù)據(jù)繪制了如下的扇形統(tǒng)計(jì)圖,其中對(duì)垃圾分類非常了解的學(xué)生有30人.

(1)本次抽取的學(xué)生有 人;

(2)請(qǐng)補(bǔ)全扇形統(tǒng)計(jì)圖;

(3)請(qǐng)估計(jì)該校1600名學(xué)生中對(duì)垃圾分類不了解的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】共享單車近日成為市民新寵,越來越多的居民選擇共享單車作為出行的交通工具,某中學(xué)課外興趣小組為了了解某小區(qū)居民每周使用共享單車時(shí)間的情況,隨機(jī)抽取了該小區(qū)部分使用共享單車的居民進(jìn)行調(diào)查(問卷調(diào)查表如圖所示),并用調(diào)查結(jié)果繪制了圖①、圖②兩幅每周使用共享單車時(shí)間的人數(shù)統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)統(tǒng)計(jì)圖解答以下問題:

(1)本次接受問卷調(diào)查的共有 人;在扇形統(tǒng)計(jì)圖中“D”選項(xiàng)所占的百分比為 ;

(2)扇形統(tǒng)計(jì)圖中,“B”選項(xiàng)所對(duì)應(yīng)扇形圓心角為 度;

(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(4)若該小區(qū)共有1200名居民,請(qǐng)你估計(jì)該小區(qū)使用共享單車的時(shí)間在A選項(xiàng)的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.圓中最長(zhǎng)的弦是直徑B.相等的圓心角所對(duì)的弧相等

C.平分弦的直徑垂直于弦D.過三個(gè)點(diǎn)一定能作一個(gè)圓

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1)(2x2y+3xy2)﹣(x2y3xy2);

24m2n22mnm2n+mn

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把33.28°化成度、分、秒,得_________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由幾個(gè)相同的邊長(zhǎng)為1的小立方塊搭成的幾何體

(1)請(qǐng)畫出這個(gè)幾何體的三視圖;

(2)根據(jù)三視圖,這個(gè)幾何體的表面積為 個(gè)平方單位(包括底面積);

(3)若上述小立方塊搭成的幾何體的俯視圖不變,各位置的小立方塊個(gè)數(shù)可以改變(總數(shù)目不變),則搭成的幾何體的表面積最大為 個(gè)平方單位(包括底面積)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,假命題的是(  )

A. 四個(gè)角都相等的四邊形是矩形

B. 對(duì)角線互相平分且垂直的四邊形是菱形

C. 對(duì)角線互相垂直且相等的四邊形是正方形

D. 對(duì)角線相等的平行四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若將直線y=﹣2x向上平移3個(gè)單位后得到直線AB,那么直線AB的解析式是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案