【題目】如圖,為了測(cè)量某建筑物BC的高度,小明先在地面上用測(cè)角儀自A處測(cè)得建筑物頂部的仰角是30°,然后在水平地而上向建筑物前進(jìn)了50m到達(dá)D處,此時(shí)遇到一斜坡,坡度i=1: ,沿著斜坡前進(jìn)20米到達(dá)E處測(cè)得建筑物頂部的仰角是45°,(坡度i=1: 是指坡面的鉛直高度FE與水平寬度DE的比).請(qǐng)你計(jì)算出該建筑物BC的高度.(取 =1.732,結(jié)果精確到0.1m).

【答案】解:過E作EF⊥AB于F,EG⊥BC與G,

∵CB⊥AB,

∴四邊形EFBG是矩形,

∴EG=FB,EF=BG,

設(shè)CG=x米,

∵∠CEG=45°,

∴FB=EG=CG=x,

∵DE的坡度i=1: ,

∴∠EDF=30°,

∵DE=20,

∴DF=20cos30°=10 ,BG=EF=20sin30°=10,

∴AB=50+10 +x,BC=x+10,

在Rt△ABC中,

∵∠A=30°,

∴BC=ABtan∠A,

即x+10= (50+10 +x),

解得:x≈68.3,

∴BC=7.3米,

答:建筑物BC的高度是78.3米.


【解析】解直角三角形的基本輔助線方法為作垂線,把特殊角或已知三角函數(shù)值的角放到直角三角形中,在Rt△ABC中利用tan30°列出方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(6,0),又點(diǎn)B(x,y)在第一象限內(nèi),且xy=8,設(shè)△AOB的面積是S.

(1)寫出Sx之間的函數(shù)解析式,并求出x的取值范圍;

(2)畫出(1)中所求函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長均為1個(gè)單位長度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)D,點(diǎn)E、F分別是BC的對(duì)應(yīng)點(diǎn).

1)請(qǐng)畫出平移后的△DEF

2)若連接ADCF,則這兩條線段之間的關(guān)系是      

3)畫出△ABCBC邊上的高AM

4)滿足三角形ACP的面積等于三角形ACB的面積的格點(diǎn)P 個(gè)(不和B重合)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將連續(xù)偶數(shù)2,46,8排成如圖數(shù)表.

1)十字框中的五個(gè)數(shù)的和與中間的數(shù)16有什么關(guān)系?

2)設(shè)中間的數(shù)為a,用式子表示十字框中的五個(gè)數(shù)之和;

3)若十字框中的五數(shù)之和為220,求十字框中的正中心的數(shù)是多少?

4)若將十字框上、下、左、右平移,可框住另外的五個(gè)數(shù),則十字框中的五個(gè)數(shù)之和可能等于2010嗎?若可能,寫出這五個(gè)數(shù);如不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反映了小明從家里到超市的時(shí)間與距離之間關(guān)系的一幅圖。

1)圖中自變量和因變量各是什么?

2)小明到達(dá)超市用了多少時(shí)間?超市離家多遠(yuǎn)?

3)分別求小明從家里到超市時(shí)的平均速度是多少?返回時(shí)的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣5,1),B(﹣2,2),C(﹣14),請(qǐng)按下列要求畫圖:

1)將△ABC先向右平移4個(gè)單位長度、再向下平移1個(gè)單位長度,得到△A1B1C1,畫出△A1B1C1;

2)畫出與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A2B2C2,并直接寫出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸為直線x=﹣1,點(diǎn)B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結(jié)論有( )個(gè).

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是CD、BC上的點(diǎn).若∠AEF=90°,則一定有( )

A.△ADE∽△ECF
B.△BCF∽△AEF
C.△ADE∽△AEF
D.△AEF∽△ABF

查看答案和解析>>

同步練習(xí)冊(cè)答案