【題目】如圖,已知點(diǎn)A、B、C在同一直線上,△ABD和△BCE都是等邊三角形.則在下列結(jié)論中:①AP=DQ,②EP=EC,③PQ=PB,④∠AOB=∠BOC=∠COE.正確的結(jié)論是(填寫序號).
【答案】①③④
【解析】解:∵△ABD和△BCE都是等邊三角形, ∴BD=BA=AD,BE=BC=EC,∠ABD=∠CBE=60°,
∵點(diǎn)A、B、C在同一直線上,
∴∠DBE=180°﹣60°﹣60°=60°,
∴∠ABE=∠DBC=120°.
在△ABE和△DBC中,
,
∴△ABE≌△DBC,
∴∠BAE=∠BDC.
在△ABP和△DBQ中,
,
∴△ABP≌△DBQ,
∴AP=DQ,BP=BQ.
∴①正確.
∵∠PBQ=60°,
∴△BPQ是等邊三角形,
∴PQ=PB.∠BPQ=60°.
∴③正確.
∵∠EPB>∠BPQ,∠BPQ=∠EBP=60°,
∴∠EPB>∠EBP,
∴EB>EP,
∴EC>EP,
∴②不正確.
∵∠DPA=∠PDO+∠DOP,∠DPA=∠PAB+∠ABP,∠PDO=∠PAB,
∴∠DOP=∠ABP=60°,
∴∠COE=60°,∠AOC=120°.
∵△ABE≌△DBC,
∴S△ABE=S△DBC , AE=DC,
∴點(diǎn)B到AE、DC的距離相等,
∴點(diǎn)B在∠AOC的角平分線上,
∴∠AOB=∠BOC= ∠AOC=60°,
∴∠AOB=∠BOC=∠COE=60°.
∴④正確.
故答案為①③④.
易證△ABE≌△DBC,則有∠BAE=∠BDC,從而可證到△ABP≌△DBQ,則有AP=DQ,BP=BQ,由∠PBQ=60°可得△BPQ是等邊三角形,則有PQ=PB.∠BPQ=60°,從而可得∠EPB>∠EBP,即可得到EB>EP,即EC>EP,由△ABE≌△DBC可得S△ABE=S△DBC , AE=DC,從而可得點(diǎn)B到AE、DC的距離相等,因而點(diǎn)B在∠AOC的角平分線上,即可得到∠AOB=∠BOC=∠COE=60°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=120°,AB=AC=6.P是底邊BC上的一個動點(diǎn)(P與B、C不重合),以P為圓心,PB為半徑的⊙P與射線BA交于點(diǎn)D,射線PD交射線CA于點(diǎn)E.
(1)若點(diǎn)E在線段CA的延長線上,設(shè)BP=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)當(dāng)BP=時,試說明射線CA與⊙P是否相切.
(3)連接PA,若S△APE=S△ABC,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解七年級同學(xué)每天的睡眠時間,在七年級的10個班中,每班抽5名學(xué)生做調(diào)查,這一調(diào)查中,總體是指_____,樣本是指_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,C是線段BE上一點(diǎn),以BC、CE為邊分別在BE的同側(cè)作等邊△ABC和等邊△DCE,連結(jié)AE、BD.
(1)求證:BD=AE;
(2)如圖2,若M、N分別是線段AE、BD上的點(diǎn),且AM=BN,請判斷△CMN的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題是( ).
A.兩條對角線垂直且相等的四邊形是正方形
B.兩條對角線互相垂直的四邊形是菱形
C.兩條對角線互相平分且相等的四邊形是矩形
D.一組對邊平行,另一組對邊相等的四邊形是平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形OABC中,O為直角坐標(biāo)系的原點(diǎn),A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點(diǎn)P、Q同時從原點(diǎn)出發(fā),分別作勻速運(yùn)動,其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動,速度為每秒1個單位;點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動,當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時,另一點(diǎn)也停止運(yùn)動.設(shè)P從出發(fā)起運(yùn)動了t秒.
(1)如果點(diǎn)Q的速度為每秒2個單位,①試分別寫出這時點(diǎn)Q在OC上或在CB上時的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);
②求t為何值時,PQ∥OC?
(2)如果點(diǎn)P與點(diǎn)Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,①試用含t的代數(shù)式表示這時點(diǎn)Q所經(jīng)過的路程和它的速度;
②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程x2﹣6x+8﹣t=0有兩個實數(shù)根x1,x2,且(x1﹣2)(x2﹣2)=﹣6,則t=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com