如圖,點(diǎn)C′與半圓上的點(diǎn)C關(guān)于直徑AB成軸對(duì)稱.若∠AOC=40°,則∠CC′B
 ▲ °.
70
連接BC,即有∠AOC=2∠ABC,可得出∠ABC的度數(shù),又AB⊥CC′,所以有∠C′CB=90°-∠ABC.根據(jù)軸對(duì)稱的性質(zhì)即可得出∠CC′B=∠C′CB.

解:連接BC,
所以∠ABC=∠AOC=20°;
又AB⊥CC′,
所以有∠C′CB=90°-∠ABC=70°;
即∠CC′B=70°.
故答案為:70°.
本題主要考查了垂徑定理的應(yīng)用和軸對(duì)稱的有關(guān)知識(shí),題目不難,屬于基礎(chǔ)性題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(6分)如圖,線段經(jīng)過(guò)圓心,交⊙O于點(diǎn),點(diǎn)在⊙O上,連接,是⊙O的切線嗎?請(qǐng)說(shuō)明理由.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,四邊形內(nèi)接于,的直徑,

于點(diǎn),則的正切值是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知⊙O的直徑AB=8cm,C為⊙O上的一點(diǎn),∠BAC=30°,則BC=_________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(8分)小平所在的學(xué)習(xí)小組發(fā)現(xiàn),車輛轉(zhuǎn)彎時(shí),能否順利通過(guò)直角彎道的標(biāo)圖2是某巷子的俯視圖,巷子路面寬4 m,轉(zhuǎn)彎處為直角,車輛的車身為矩形ABCD,CD與DE、CE的夾角都是45°時(shí),連接EF,交CD于點(diǎn)G,若GF的長(zhǎng)度至少能達(dá)到車身寬度,即車輛能通過(guò).
(1)小平認(rèn)為長(zhǎng)8m,寬3m的消防車不能通過(guò)該直角轉(zhuǎn)彎,請(qǐng)你幫他說(shuō)明理由;
為半徑的。L(zhǎng)8m,寬3m的消防車就可以通過(guò)該彎道了,具體的方案如圖3,其中OM⊥OM′,你能幫小平算出,ON至少為多少時(shí),這種消防車可以通過(guò)該巷子,?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB是⊙O直徑,且AB=4cm,弦CD⊥AB,∠COB=45°,則CD為   ▲  cm.   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知的邊相切于點(diǎn),,的半徑為,當(dāng)相切時(shí),的半徑是


                        
                     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)
如圖,O是△ABC的外接圓,AB = AC,過(guò)點(diǎn)A作AP∥BC,交BO的延長(zhǎng)線于P.
(1)求證:AP是O的切線;
(2)若O的半徑R = 6,△ACD為等邊三角形時(shí),求線段AP的長(zhǎng).     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,PA為⊙O的切線,A為切點(diǎn),PO交⊙O于點(diǎn)B,PA=4,OA=3,則cos∠APO
的值為(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案