如圖,AB是⊙O直徑,且AB=4cm,弦CD⊥AB,∠COB=45°,則CD為   ▲  cm.   
2
根據(jù)已知條件求得圓的半徑OC=2;然后由垂徑定理知CE=CD;再在直角三角形OEC中利用勾股定理求得CE的值.
解:∵AB是⊙O直徑,AB=4cm,

∴OC=AB=2(半徑是直徑的一半);
∵AB是⊙O直徑,CD⊥AB,
∴CE=CD(垂徑定理);
又∵∠COB=45°,
∴∠OCB=45°,
∴∠COB=∠OCB=45°,
∴OE=CE(等角對等邊);
在直角三角形OCE中,OC2=OE2+CE2,
∴CE=,
∴CD=2
故答案為:2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分) 如圖,在平行四邊形ABCD中,AB在x軸上,D點y軸上,,,B點坐標(biāo)為(4,0).點是邊上一點,且.點、分別從同時出發(fā),以1厘米/秒的速度分別沿、向點運動(當(dāng)點F運動到點B時,點E隨之停止運動),EM、CD的延長線交于點P,F(xiàn)PAD于點Q.⊙E半徑為,設(shè)運動時間為秒。

(1)求直線BC的解析式。
(2)當(dāng)為何值時,?
(3)在(2)問條件下,⊙E與直線PF是否相切;如果相切,加以證明,并求出切點的坐標(biāo)。如果不相切,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:計算題

已知:如圖,AB是⊙O的一條弦,點C為的中點,CD是⊙O的直徑,過C點的直線交AB所在直線于點E,交⊙O于點F。
(1)判定圖中的數(shù)量關(guān)系,并寫出結(jié)論;
(2)將直線繞C點旋轉(zhuǎn)(與CD不重合),在旋轉(zhuǎn)過程中,E點、F點的位置也隨之變化,請你在下面兩個備用圖中分別畫出在不同位置時,使(1)的結(jié)論仍然成立的圖形,標(biāo)上相應(yīng)字母,選其中一個圖形給予證明。
         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(8分)如圖,在△ABC中,AB=AC,∠B=30°,O是BC上一點,以點O為
圓心,OB長為半徑作圓,恰好經(jīng)過點A,并與BC交于點D.
(1)判斷直線CA與⊙O的位置關(guān)系,并說明理由;
(2)若AB=2,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點C′與半圓上的點C關(guān)于直徑AB成軸對稱.若∠AOC=40°,則∠CC′B
 ▲ °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB為⊙O的弦,⊙O的半徑為5,OC⊥AB于點D,交⊙O于點C,且CD=l,則弦AB的長是            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,BC交⊙O于點D,DE⊥AC于點E,要使DE是⊙O的切線,還需補充一個條件,則補充的條件不正確的是( 。
A.DE="DO"B.AB=AC
C.CD="DB"D.AC∥OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•廣元)若用圓心角為120°,半徑為9的扇形圍成一個圓錐側(cè)面(接縫忽略不計),則這個圓錐的底面直徑是(  )
A.3B.6
C.9D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若一直角三角形的斜邊長為,內(nèi)切圓半徑是,則內(nèi)切圓的面積與三角形面積之比是(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案