【題目】如圖,已知點A1、A2、A3、…、An在x軸上,且OA1=A1A2=A2A3=…=An﹣1An=1,分別過點A1、A2、A3、……、An作x軸的垂線,交反比例函數(shù)y=(x>0)的圖象于點B1、B2、B3、…、Bn,過點B2作B2P1⊥A1B1于點P1,過點B3作B3P2⊥A2B2于點P2,…,若記△B1P1B2的面積為S1,△B2P2B3的面積為S2,…,△BnPnBn+1的面積為Sn,則S1+S2+…+S2019=_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和拋物線的交點是A(0,﹣3),B(5,9),已知拋物線的頂點D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點坐標(biāo);
(2)在x軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標(biāo),若不在,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:任何有理數(shù)的平方都是一個非負(fù)數(shù),即對于任何有理數(shù)a,都有 成立,所以,當(dāng)時,有最小值0.
(應(yīng)用):(1)代數(shù)式有最小值時, ;
(2)代數(shù)式的最小值是 ;
(探究):求代數(shù)式的最小值,小明是這樣做的:
∴當(dāng)時,代數(shù)式有最小值,最小值為5.
(3)請你參照小明的方法,求代數(shù)式的最小值,并求此時a的值.
(拓展):(4)若,直接寫出y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,拋物線經(jīng)過點A(-2,0),B(4,0)兩點,與軸交于點C,點D是拋物線上一個動點,設(shè)點D的橫坐標(biāo)為.連接AC,BC,DB,DC,
(1)求拋物線的函數(shù)表達(dá)式;
(2)△BCD的面積等于△AOC的面積的時,求的值;
(3)在(2)的條件下,若點M是軸上的一個動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形,若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我省南部的南宮山景區(qū),為吸引游客組團來此旅游特推出了如下門票收費標(biāo)準(zhǔn):
標(biāo)準(zhǔn)一:如果人數(shù)不超過20人,門票價格70元/人
標(biāo)準(zhǔn)二:如果人數(shù)超過20人,每超過1人,門票價格降低2元,但門票價格不低于55元/人
(1)若某單位組織22名員工去南宮山景區(qū)旅游,則購買門票共需多少元?
(2)若某單位共支付南宮山景區(qū)門票費用1500元,試求該單位這次共有多少名員工去南宮山旅游.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進(jìn)價為20元.根據(jù)以往經(jīng)驗:當(dāng)銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.
(1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.
(2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(t,0),B(t+2,0).對于線段AB和點P給出如下定義:當(dāng)∠APB=90°時,稱點P為線段AB的“直角點”.
(Ⅰ)當(dāng)t=﹣1時,點C(0,1),判斷點C是否為線段AB的“直角點”,并說明理由;
(Ⅱ)已知拋物線y=ax2+bx(a>0,b<0)的頂點為M,與x軸交于A(t,0),B(t+2,0),若點M為線段AB的“直角點”,求出此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在中,,,點、分別是、的中點,連接.
(1)在圖①中,的值為______;的值為______.
(2)若將繞點逆時針方向旋轉(zhuǎn)得到,點、的對應(yīng)點為、,在旋轉(zhuǎn)過程中的大小是否發(fā)生變化?請僅就圖②的情形給出證明.
(3)當(dāng)在旋轉(zhuǎn)一周的過程中,,,三點共線時,請你直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△ABC中,∠C=90°,點O在AC上,以AO為半徑的⊙O交AB于D, BD的垂直平分線交BD于F,交BC于E,連接DE.
(1)求證:DE是⊙O的切線;
(2)若∠B=30°,BC=,且AD∶DF=1∶2,求⊙O的直徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com