【題目】如圖,在平面直角坐標(biāo)系中,在平面直角坐標(biāo)系中,拋物線y=ax2+3x+c與x軸交于A、B兩點,與y軸交于點C(0,8),直線l經(jīng)過原點O,與拋物線的一個交點為D(6,8).

(1)求拋物線的解析式;
(2)拋物線的對稱軸與直線l交于點E,點T為x軸上方的拋物線上的一個動點.
①當(dāng)∠TEC=∠TEO時,求點T的坐標(biāo);
②直線BT與y軸交于點P,與直線l交于點Q,當(dāng)OP=OQ時,求點P的坐標(biāo).

【答案】
(1)

解:把C、D兩點的坐標(biāo)代入拋物線解析式可得 ,解得 ,

∴拋物線解析式為y=﹣ x2+3x+8


(2)

解:①∵y=﹣ x2+3x+8=﹣ (x﹣3)2+ ,

∴拋物線對稱軸為x=3,

設(shè)直線l解析式為y=kx,

把D(6,8)代入可得8=6k,解得k= ,

∴直線l的解析式為y= x,

∴E(3,4),

∵O(0,0),C(0,8),

∴OE=CE,

∴點E在線段OC的垂直平分線上,

∵∠TEC=∠TEO,

∴TE∥x軸,

∴T的縱坐標(biāo)為4,

在y=﹣ x2+3x+8中,令y=4可得4=﹣ x2+3x+8,解得x=3+ 或x=3﹣

∴T的坐標(biāo)為(3+ ,4)或(3﹣ ,4);

②在y=﹣ x2+3x+8中,令y=0可得0=﹣ x2+3x+8,解得x=﹣2或x=8,

∴B(8,0),

∵E(3,4),

∴OE=5,

如圖2,過點E作BP的平行線,交y軸于點F,交x軸于點H,

=

∵OP=OQ,

∴OF=OE=5,

∴F(0,5),

∴可設(shè)直線PB的解析式為y=kx+5,

把E點坐標(biāo)代入可得4=3k+5,解得k=﹣ ,

∴直線EF的解析式為y=﹣ x+5,

∴可設(shè)直線PB的解析式為y=﹣ x+m,

把B點坐標(biāo)代入可得0=﹣ ×8+m,解得m= ,

∴P點坐標(biāo)為(0,


【解析】(1)由C、D坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)①可先求得拋物線的對稱軸和直線l的解析式,則可求得E點坐標(biāo),由條件可證得TE∥x軸,則可求得T點縱坐標(biāo),代入拋物線解析式,可求得T點坐標(biāo);②過E作BP的平行線,交y軸于點F,交x軸于點H,利用平行線分線段成比例可求得OF=OE,可求得F點坐標(biāo),則可求得直線EF的解析式,則可設(shè)出直線PB的解析式,把B點代入可求得直線PB解析式,可求得P點坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵居民節(jié)約用水,某市對居民用水收費實行“階梯價”,按每年用水量統(tǒng)計,不超過180立方米的部分按每立方米5元收費;超過180立方米不超過260立方米的部分按每立方米7元收費;超過260立方米的部分按每立方米9元收費.

(1)設(shè)每年用水量為x立方米,“階梯價”應(yīng)繳水費y元,請寫出y(元)x(立方米)之間的函數(shù)解析;

(2)明明預(yù)計2015全年用水量為200立方米,那么按“階梯價”收費,她家應(yīng)繳水費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AB的直徑,直線L相切于點C,,CDABE,直線L,垂足為F,BFC

圖中哪條線段與AE相等?試證明你的結(jié)論;

,求AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于圓O,四邊形ABCO是平行四邊形,則∠ADC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣(2m+1)x+m(m+1)=0
(1)求證:方程總有兩個不相等的實數(shù)根;
(2)設(shè)方程的兩根分別為x1、x2 , 求x +x 的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一食堂需要購買盒子存放食物,盒子有A、B兩種型號,單個盒子的容量和價格如表格所示.現(xiàn)有15升食物需要存放且要求每個盒子都要裝滿,由于A型號盒子正做促銷活動:購買三個及三個以上可一次性每個返還現(xiàn)金1.5元,則該食堂購買盒子所需的最少費用是

型號

A

B

單個盒子容量(升)

2

3

單價(元)

5

6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:某商場因換季,將一品牌服裝打折銷售,每件服裝如果按標(biāo)價的六折出售將虧10元,而按標(biāo)價的七五折出售將賺50元,問:

(1) 每件服裝的標(biāo)價是多少元?

(2) 每件服裝的成本是多少元?

(3)為保證不虧本,最多能打幾折?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線 (其中 )與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點C,拋物線的對稱軸l與x軸交于點D,且點D恰好在線段BC的垂直平分線上.
(1)求拋物線的關(guān)系式;
(2)過點 的線段MN∥y軸,與BC交于點P,與拋物線交于點N.若點E是直線l上一點,且∠BED=∠MNB-∠ACO時,求點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點F.

(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;

(2)如圖2,將ACD沿線段AD對折,點C落在BD上的點M,AM與BE相交于點N,當(dāng)DEAM時,判斷NE與AC的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

同步練習(xí)冊答案