【題目】為鼓勵(lì)居民節(jié)約用水,某市對(duì)居民用水收費(fèi)實(shí)行“階梯價(jià)”,按每年用水量統(tǒng)計(jì),不超過(guò)180立方米的部分按每立方米5元收費(fèi);超過(guò)180立方米不超過(guò)260立方米的部分按每立方米7元收費(fèi);超過(guò)260立方米的部分按每立方米9元收費(fèi).

(1)設(shè)每年用水量為x立方米,“階梯價(jià)”應(yīng)繳水費(fèi)y元,請(qǐng)寫(xiě)出y(元)x(立方米)之間的函數(shù)解析;

(2)明明預(yù)計(jì)2015全年用水量為200立方米,那么按“階梯價(jià)”收費(fèi),她家應(yīng)繳水費(fèi)多少元?

【答案】(1)y=;(2)1040元

【解析】

試題(1)根據(jù)題意分0≤x≤180,180<x≤260,x>260三段,根據(jù)收費(fèi)=單價(jià)×數(shù)量列式整理即可得解;

(2)把x=200代入函數(shù)解析式計(jì)算即可得解.

試題解析:(1)當(dāng)0≤x≤180時(shí),y=5x,

當(dāng)180<x≤260時(shí),y=5×180+7(x﹣180),

即y=7x﹣360,

當(dāng)x>260時(shí),y=5×180+7×(260﹣180)+9(x﹣260),

即y=9x﹣880,

綜上所述,y=;

(2)當(dāng)x=200時(shí),y=7x﹣360=7×200﹣360=1040(元).

答:按“階梯水價(jià)”收費(fèi),她家應(yīng)繳水費(fèi)1040元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,直尺的寬度為2cm,A、B兩點(diǎn)在直尺的一條邊上,AB=8cm,C、D兩點(diǎn)在直尺的另一條邊上.若∠ACB=∠ADB=90°,則C、D兩點(diǎn)之間的距離為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】放風(fēng)箏是大家喜愛(ài)的一種運(yùn)動(dòng),星期天的上午小明在市政府廣場(chǎng)上放風(fēng)箏.如圖,他在A處不小心讓風(fēng)箏掛在了一棵樹(shù)梢上,風(fēng)箏固定在了D處,此時(shí)風(fēng)箏AD與水平線的夾角為30°,為了便于觀察,小明迅速向前邊移動(dòng),收線到達(dá)了離A處10米的B處,此時(shí)風(fēng)箏線BD與水平線的夾角為45°.已知點(diǎn)A,B,C在同一條水平直線上,請(qǐng)你求出小明此時(shí)所收回的風(fēng)箏線的長(zhǎng)度是多少米?(風(fēng)箏線AD,BD均為線段, ≈1.414, ≈1.732,最后結(jié)果精確到1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 A=2 x2+3xy﹣2x﹣1,B= x2﹣xy﹣1.

(1)化簡(jiǎn):4A﹣(2B+3A),將結(jié)果用含有 x、y 的式子表示;

(2)若式子 4A﹣(2B+3A)的值與字母 x 的取值無(wú)關(guān), y3+A﹣ B 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:為了求1+3+32+33+…+3100的值,可設(shè)M=1+3+32+33+…+3100,則3M=3+32+33+34+…+3101,因此3M﹣M=3101﹣1.所以M=,即1+3+32+33+…+3100=.問(wèn)題解決:仿照上述方法求下列式子的值.

(1)1+4+42+43+…+420

(2)5101+5102+5103+…+52018

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1:y=x與雙曲線y= 相交于點(diǎn)A(a,2),將直線l1向上平移3個(gè)單位得到l2 , 直線l2與雙曲線相交于B、C兩點(diǎn)(點(diǎn)B在第一象限),交y軸于D點(diǎn).
(1)求雙曲線y= 的解析式;
(2)求tan∠DOB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中,,把A點(diǎn)沿順時(shí)針?lè)较蛐D(zhuǎn)得到,連接BD,CE交于點(diǎn)F

求證:

,,當(dāng)四邊形ADFC是菱形時(shí),求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)y= 與y=﹣kx+1(k≠0)在同一直角坐標(biāo)系中的圖象大致為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,在平面直角坐標(biāo)系中,拋物線y=ax2+3x+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,8),直線l經(jīng)過(guò)原點(diǎn)O,與拋物線的一個(gè)交點(diǎn)為D(6,8).

(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸與直線l交于點(diǎn)E,點(diǎn)T為x軸上方的拋物線上的一個(gè)動(dòng)點(diǎn).
①當(dāng)∠TEC=∠TEO時(shí),求點(diǎn)T的坐標(biāo);
②直線BT與y軸交于點(diǎn)P,與直線l交于點(diǎn)Q,當(dāng)OP=OQ時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案