【題目】如圖,邊長為4的正方形ABCD中,點E在AD上,△ABE逆時針旋轉(zhuǎn)一定角度后得到△ADF,延長BE交DF于點G,若AE=3,FG=.
(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;
(2)求證:BG⊥DF;
(3)求線段GE的長.
【答案】(1)90°;(2)見解析;(3)﹣5
【解析】
(1)根據(jù)圖形和已知的△ABE旋轉(zhuǎn)得到△ADF即可得出答案;
(2)由旋轉(zhuǎn)的性質(zhì)可得∠F=∠AEB,由余角的性質(zhì)可得結(jié)論;
(3)由勾股定理可求BE的長,再由勾股定理可求BG的長,即可求GE的長.
(1)旋轉(zhuǎn)中心是點A,旋轉(zhuǎn)角度是90°;
(2)∵△ADF是由△ABE旋轉(zhuǎn)得到,
∴△ADF≌△ABE,
∴∠F=∠AEB,
∵四邊形ABCD是正方形,
∴∠DAB=90°,
∴∠AEB+∠ABE=90°,
∴∠F+∠ABE=90°,
∴∠FGB=90°,
∴BG⊥DF;
(3)∵正方形ABCD的邊長是4,
∴AB=4,
∴在Rt△ABE中,BE==5,
∵AF=AE=3
∴FB=AF+AB=7,
∴在Rt△FBG中,BG=,
∴GE=BG﹣BE=﹣5.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,D是BC的中點,且AD=AC,DE⊥BC,DE與AB相交于點E,EC與AD相交于點F.
(1)求證:△ABC~△FCD;
(2)若△DEF的面積為2,求△FCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△ABC的位置,連接C'B.
(1)求∠ABC'的度數(shù);
(2)求C'B的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知E,F為等邊三角形ABC邊AB,AC上的兩個動點,且AF=BE,連接CE,BF交于點T,若等邊三角形ABC的邊長為12,則點T運動的路徑長為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,CE是∠DCB的角平分線,且交AB于點E,DB與CE相交于點O,
(1)求證:△EBC是等腰三角形;
(2)已知:AB=7,BC=5,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數(shù)據(jù)算出電線桿AB的高嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若兩個一次函數(shù)的圖象與x軸交于同一點,則稱這兩個函數(shù)為一對“x牽手函數(shù)”,這個交點為“x牽手點”.
(1)一次函數(shù)y=x﹣1與x軸的交點坐標為 ;一次函數(shù)y=ax+2與一次函數(shù)y=x﹣1為一對“x牽手函數(shù)”,則a= ;
(2)已知一對“x牽手函數(shù)”:y=ax+1與y=bx﹣1,其中a,b為一元二次方程x2﹣kx+k﹣4=0的兩根,求它們的“x牽手點”.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,對角線AC、BD相交于點O將其繞著點O順時針旋轉(zhuǎn)90°得到菱形A‘B’C‘D’.若AB=1,則旋轉(zhuǎn)前后兩菱形重疊部分圖形的周長為__________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com