【題目】ABC中,∠CAB2B,AE平分∠CAB,CDABD,AC3,AD1.下列結(jié)論:①∠AEC=∠CAB;②EFCE;③ACAE;④BD4;

正確的是___________(填序號)

【答案】①②.

【解析】

根據(jù)角平分線,三角形的外角性質(zhì)以及等角對等邊的性質(zhì)可得出結(jié)論①②正確.

解:∵AE平分∠CAB,

∴∠CAB2EAB

∵∠CAB2B,

∴∠EAB=∠B,

∵∠AEC=∠B+EAB,

∴∠AEC2B=CAB,①正確;

CDABD,

∴∠B+DCB=90°,∠EAB+AFD=90°

∵∠EAB=∠B,

∴∠DCB=∠AFD,

∵∠CFE=∠AFD

∴∠CFE=∠DCB,

EFCE,②正確;

無法證明ACAE,故③不正確;

AC3,AD1,CDABD

CD= ,

不能得出BD4,故④不正確.

故答案為:①②.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=mx+m和函數(shù)y=-mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的方格紙中,小正方形的頂點叫做格點,是一個格點三角形(的三個頂點都在格點上),根據(jù)要求回答下列問題:

畫出先向左平移6格,再向上平移格所得的;

利用網(wǎng)格畫出邊上的高.

過點畫直線,將分成面積相等的兩個三角形;

畫出與有一條公共邊,且與全等的格點三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,FC在一條直線上).

(1)求辦公樓AB的高度;

(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.

(參考數(shù)據(jù):sin22°,cos22°tan22°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸l為x=﹣1.

(1)求拋物線的解析式并寫出其頂點坐標;

(2)若動點P在第二象限內(nèi)的拋物線上,動點N在對稱軸l上.

當PANA,且PA=NA時,求此時點P的坐標;

當四邊形PABC的面積最大時,求四邊形PABC面積的最大值及此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD與矩形EFGH在直線的同側(cè),邊AD,EH在直線上,且AD=5 cm,EH=4 cm, EF=3 cm.保持正方形ABCD不動,將矩形EFGH沿直線左右移動,連接BF、CG,則BF+CG的最小值為(

A. 4B. C. D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),如果這三種情況是等可能的,當三輛汽車經(jīng)過這個十字路口時:

1)請你用列表或畫樹狀圖的方法,表示出所有可能的結(jié)果;

2)三輛車全部同向而行的概率是 ,至少有兩輛車向左轉(zhuǎn)的概率是

3)由于十字路口右拐彎處是通往新建經(jīng)濟開發(fā)區(qū)的,因此交管部門在汽車行駛高峰時段對車流量作了統(tǒng)計,發(fā)現(xiàn)汽車在此十字路口向右轉(zhuǎn)的頻率為,向左轉(zhuǎn)和直行的頻率均為.目前在此路口,汽車左轉(zhuǎn)、右轉(zhuǎn)、直行的綠燈亮的時間分別為30秒,在綠燈亮總時間不變的條件下,為了緩解交通擁擠,請你用統(tǒng)計的知識對此路口三個方向的綠燈亮的時間做出合理的調(diào)整.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將兩個完全相同的三角形紙片ABCDEC重合放置,其中,.

1)操作發(fā)現(xiàn)

①固定,使繞點C旋轉(zhuǎn).當點D恰好落在AB邊上時(如圖2);線段DEAC的位置關(guān)系是________,請證明;

②設(shè)的面積為,的面積為,則的數(shù)量關(guān)系是________.

2)猜想論證

繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中的數(shù)量關(guān)系仍然成立,請你分別作出BC、CE邊上的高,并由此證明小明的猜想.

3)拓展探究

己知,點D是其角平分線上一點,BC于點E(如圖4),請問在射線BA上是否存在點F,使,若存在,請直接寫出符合條件的點F的個數(shù),若不存在,請說明理由.

1 2

3 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,EF 是平行四邊形 ABCD 的對角線 AC 上的兩點,AE=CF

求證:(1EB DF

2EBDF

查看答案和解析>>

同步練習冊答案