【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-2,與x軸的一個交點在(-3,0)和(-4,0)之間,其部分圖象如圖所示,則下列結(jié)論:①3a-c<0;② abc<0; ③點,,是該拋物線上的點,則; ④4a-2b≥at2+bt(t為實數(shù));正確的個數(shù)有()個
A.1B.2C.3D.4
【答案】C
【解析】
根據(jù)拋物線的對稱軸可得到4a=b,由x=-1時y>0可判斷①,由拋物線開口方向、與x軸的交點及拋物線的對稱性可判斷②,根據(jù)拋物線的開口向下且對稱軸為直線x=-2知圖象上離對稱軸水平距離越小函數(shù)值越大,可判斷③,由x=-2時函數(shù)取得最大值可判斷④.
∵拋物線的對稱軸為直線,
∴4ab=0,即4a=b,
∵拋物線開口向下
∴a<0,b<0,
∵與x軸的一個交點在(3,0)和(4,0)之間,
∴由拋物線的對稱性知,另一個交點在(1,0)和(0,0)之間,
∴拋物線與y軸的交點在y軸的負(fù)半軸,即c<0,
∴abc<0,故②正確;
∵由②知,當(dāng)x=-1時y>0,且b=4a,
即a-b+c=a-4a+c=-3a+c>0,
∴3a-c<0,故①正確;
∵拋物線的開口向下,且對稱軸為直線x=-2,
∴拋物線上離對稱軸水平距離越小,函數(shù)值越大,
∴y1<y3<y2,故③錯誤;
由函數(shù)圖象知當(dāng)x=-2時,函數(shù)取得最大值,
∴,
即 (t為實數(shù)),故④正確;
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝新中國成立70周年,河南省實驗中學(xué)開展了以“我和我親愛的祖國”為主題的“快閃”活動,九年級準(zhǔn)備從兩名男生和兩名女生中選出兩名同學(xué)領(lǐng)唱,如果每一位同學(xué)被選中的機(jī)會均等,則選出的恰為一位男生一位女生的概率是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形紙片ABCD中,∠B=∠D=90°,點E,F(xiàn)分別在邊BC,CD上,將AB,AD分別沿AE,AF折疊,點B,D恰好都和點G重合,∠EAF=45°.
(1)求證:四邊形ABCD是正方形;
(2)求證:三角形ECF的周長是四邊形ABCD周長的一半;
(3)若EC=FC=1,求AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,EF,EB是⊙O的弦,且EF=EB,EF與AB交于點C,連接OF,若∠AOF=40°,則∠F的度數(shù)是( )
A.20°B.35°C.40°D.55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一跨河橋,橋拱是圓弧形,跨度(AB)為16米,拱高(CD)為4米,求:
(1)橋拱半徑.
(2)若大雨過后,橋下河面寬度(EF)為12米,求水面漲高了多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C為線段BD上的一點,△ABC和△CDE是等邊三角形.
(1)求證:AD=BE.
(2)以點C為中心,將△CDE逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為ɑ(0°<ɑ<360°).
①當(dāng)ɑ為多少時DE∥AB?直接寫出結(jié)果,不要求證明.
②當(dāng)BC=6, CD=4時 ,設(shè)點E到直線AB的距離為y, 當(dāng)ɑ為多少時,點E到直線AB的距離最。壳蟪鲎钚≈,并簡潔說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點A順時針旋轉(zhuǎn)一定的角度得到△AED,點B、C的對應(yīng)點分別是E、D.
(1)如圖1,當(dāng)點E恰好在AC上時,求∠CDE的度數(shù);
(2)如圖2,若=60°時,點F是邊AC中點,求證:四邊形BFDE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是邊長為的正方形ABCD的對角線BD上的動點,過點P分別作PE⊥BC于點E,PF⊥DC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EF交AH于點G,當(dāng)點P在BD上運(yùn)動時(不包括B、D兩點),以下結(jié)論中:①MF=MC;②AH⊥EF;③AP2=PMPH;④EF的最小值是.其中正確結(jié)論是( 。
A. ①③ B. ②③ C. ②③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知正方形的頂點的坐標(biāo)為,點的坐標(biāo)為,頂點在第一象限內(nèi),拋物線(常數(shù))的頂點為正方形對角線上一動點.
(1)當(dāng)拋物線經(jīng)過兩點時,求拋物線的解析式;
(2)若拋物線與直線相交于另一點(非拋物線頂點,且在第一象限內(nèi)),求證:長是定值;
(3)根據(jù)(2)的結(jié)論,取的中點,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com