精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知∠E=F,∠B=C,AE=AF,結論:①EM=FN;②CD=DN;③∠FAN=EAM;④△ACN≌△ABM.其中正確的有(  )

A. 1B. 2

C. 3D. 4

【答案】C

【解析】

根據已知的條件,可由AAS判定AEB≌△AFC,進而可根據全等三角形得出的結論來判斷各選項是否正確.

因為∠E=F,∠B=C,AE=AF,所以 AEB≌△AFCAAS),

所以∠FAM=EAN,所以 EAN-MAN=FAN-MAN,

即∠EAN =FAN 故③正確.

又因為∠E=F ,AE=AF ,所以EAM≌△FANASA.

所以 EM=FN.故①正確.

AEB≌△AFC,知AB=AC,

又因為∠CAB=BAC,∠B=C,

所以ACN≌△ABM,故④正確.

由于條件不足,無法證得②CD=DN故正確的結論有:①③④,故選C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】觀察下列每一列數,按規(guī)律填空

1 , ,……

2 , ……

3 , ,……

4)在(1)列數中第100個數是 ,在(2)列數中第200個數是 ,在(3)列數中第199個數是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1876年,美國總統(tǒng)Garfield用如圖所示的兩個全等的直角三角形證明了勾股定理,若圖中,,則下面結論錯誤的是( )

A. B. C. D. 是等腰直角三角形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知四邊形ABCD內接于⊙O,A的中點,AEACA,與⊙OCB的延長線交于點F,E,且.

(1)求證:△ADC∽△EBA

(2)如果AB8,CD5,求tan∠CAD的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】老師和小明同學玩數學游戲.老師取出一個不透明的口袋,口袋中裝有三張分別標有數字1,2,3的卡片,卡片除數字外其余都相同,老師要求小明同學兩次隨機抽取一張卡片,并計算兩次抽到卡片上的數字之積是奇數的概率.于是小明同學用畫樹狀圖的方法尋求他兩次抽取卡片的所有可能結果.如圖是小明同學所畫的正確樹狀圖的一部分.

(1)補全小明同學所畫的樹狀圖;

(2)求小明同學兩次抽到卡片上的數字之積是奇數的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點,點P是拋物線上在第一象限內的一點,直線BP與y軸相交于點C.

(1)求拋物線y=﹣x2+ax+b的解析式;

(2)當點P是線段BC的中點時,求點P的坐標;

(3)在(2)的條件下,求sin∠OCB的值.

【答案】(1) y=﹣x2+4x﹣3;(2) P的坐標為(,);(3) .

【解析】分析:(1)將點A、B代入拋物線y=-x2+ax+b,解得a,b可得解析式;

(2)由C點橫坐標為0可得P點橫坐標,將P點橫坐標代入(1)中拋物線解析式,易得P點坐標;

(3)由P點的坐標可得C點坐標,A、BC的坐標,利用勾股定理可得BC長,利用sin∠OCB=可得結果.

詳解:(1)將點A、B代入拋物線y=﹣x2+ax+b可得,

,

解得,a=4,b=﹣3,

∴拋物線的解析式為:y=﹣x2+4x﹣3;

(2)∵點Cy軸上,

所以C點橫坐標x=0,

∵點P是線段BC的中點,

∴點P橫坐標xP==,

∵點P在拋物線y=﹣x2+4x﹣3上,

yP=﹣3=,

∴點P的坐標為();

(3)∵點P的坐標為(,),點P是線段BC的中點,

∴點C的縱坐標為﹣0=,

∴點C的坐標為(0,),

BC==

sinOCB===

點睛:本題主要考查了待定系數法求二次函數解析式,二次函數圖像與性質,解直角三角形,勾股定理,利用中點求得點P的坐標是解答此題的關鍵.

型】解答
束】
24

【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點B作⊙O的切線BD,與CA的延長線交于點D,與半徑AO的延長線交于點E,過點A作⊙O的切線AF,與直徑BC的延長線交于點F.

(1)求證:△ACF∽△DAE;

(2)若S△AOC=,求DE的長;

(3)連接EF,求證:EF是⊙O的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點B作⊙O的切線BD,與CA的延長線交于點D,與半徑AO的延長線交于點E,過點A作⊙O的切線AF,與直徑BC的延長線交于點F.

(1)求證:△ACF∽△DAE;

(2)若S△AOC=,求DE的長;

(3)連接EF,求證:EF是⊙O的切線.

【答案】(1) 見解析; (2)3 ;(3)見解析.

【解析】試題分析:(1)根據圓周角定理得到BAC=90°,根據三角形的內角和得到ACB=60°根據切線的性質得到OAF=90°,∠DBC=90°,于是得到D=∠AFC=30°由相似三角形的判定定理即可得到結論;

(2)根據SAOC=,得到SACF=,通過ACF∽△DAE,求得SDAE=,過AAHDEH,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結論;

(3)根據全等三角形的性質得到OE=OF,根據等腰三角形的性質得到OFG=(180°﹣∠EOF)=30°,于是得到AFO=∠GFO,過OOGEFG,根據全等三角形的性質得到OG=OA,即可得到結論.

試題解析:(1)證明:BCO的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°

OA=OC,∴∠AOC=60°,∵AFO的切線,∴∠OAF=90°,∴∠AFC=30°,∵DEO的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE

(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵SAOC=,∴SACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴SDAE=,過AAHDEH,∴AH=DH=DE,∴SADE=DEAH=×=,∴DE=;

(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,AOFBOE中,∵∠OBE=∠OAF,∠OEB=∠AFOOA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過OOGEFG,∴∠OAF=∠OGF=90°,在AOFOGF中,∵∠OAF=∠OGF,∠AFO=∠GFOOF=OF,∴△AOF≌△GOF,∴OG=OA,∴EFO的切線.

型】解答
束】
25

【題目】如圖,在平面直角坐標系中,O為原點,四邊形ABCO是矩形,點A,C的坐標分別是A(0,2)和C(2,0),點D是對角線AC上一動點(不與A,C重合),連結BD,作DE⊥DB,交x軸于點E,以線段DE,DB為鄰邊作矩形BDEF.

(1)填空:點B的坐標為   ;

(2)是否存在這樣的點D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;

(3)①求證:;

②設AD=x,矩形BDEF的面積為y,求y關于x的函數關系式(可利用①的結論),并求出y的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(本題8分)為培養(yǎng)學生數學學習興趣,某校七年級準備開設神奇魔方、魅力數獨數學故事、趣題巧解四門選修課(每位學生必須且只選其中一門)

(1)學校對七年級部分學生進行選課調查,得到如圖所示的統(tǒng)計圖,根據該統(tǒng)計圖,請估計該校七年級480名學生選數學故事的人數。

(2)學校將選數學故事的學生分成人數相等的A,B,C三個班,小聰、小慧都選擇了數學故事,已知小聰不在A班,求他和小慧被分到同一個班的概率(要求列表或畫樹狀圖)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉30°到正方形AEFG,則圖中陰影部分的面積為( 。

A. B. C. 1- D. 1-

查看答案和解析>>

同步練習冊答案