【題目】二次函數(shù)y=mx2+(6﹣2m)x+m﹣3的圖象如圖所示,則m的取值范圍是( 。

A. m>3 B. m<3 C. 0≤m≤3 D. 0<m<3

【答案】D

【解析】

由拋物線的開口向上知m0,由對(duì)稱軸在y軸的左側(cè)可與得到x=﹣0,由二次函數(shù)與y軸交于負(fù)半軸可以推出m30,又拋物線與x軸有兩個(gè)交點(diǎn)(b24ac0),可以得到(62m24mm30,然后利用前面的結(jié)論即可確定m的取值范圍

∵拋物線的開口向上m0,

∵對(duì)稱軸在y軸的左側(cè)x=﹣0,

∵二次函數(shù)與y軸交于負(fù)半軸m30,

∵拋物線與x軸有兩個(gè)交點(diǎn)(b24ac0),62m24mm30

聯(lián)立①②③④解得0m3,m的取值范圍是0m3

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正常情況下,一個(gè)人在運(yùn)動(dòng)時(shí)所能承受的每分鐘心跳的最高次數(shù)y(/)是這個(gè)人年齡x()的一次函數(shù)。

(1)根據(jù)圖中信息,求在正常情況下,y關(guān)于x的函數(shù)關(guān)系式;

(2)若一位63歲的人在跑步,醫(yī)生在途中給他測(cè)得10秒心跳為26,問:他是否有危險(xiǎn)?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1,點(diǎn)B(﹣9,10,AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).

(1求拋物線的解析式;(2過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某旅游景點(diǎn)的一處臺(tái)階,其中臺(tái)階坡面AB和BC的長(zhǎng)均為6m,AB部分的坡角∠BAD為45°,BC部分的坡角∠CBE為30°,其中BD⊥AD,CE⊥BE,垂足為D,E.現(xiàn)在要將此臺(tái)階改造為直接從A至C的臺(tái)階,如果改造后每層臺(tái)階的高為22cm,那么改造后的臺(tái)階有多少層?(最后一個(gè)臺(tái)階的高超過15cm且不足22cm時(shí),按一個(gè)臺(tái)階計(jì)算.可能用到的數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,拋物線y=﹣與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線l經(jīng)過B,C兩點(diǎn),點(diǎn)M從點(diǎn)A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),連接CM,將線段MC繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°得到線段MD,連接CD,BD.設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(t>0),請(qǐng)解答下列問題:

(1)求點(diǎn)A的坐標(biāo)與直線l的表達(dá)式;

(2)①直接寫出點(diǎn)D的坐標(biāo)(用含t的式子表示),并求點(diǎn)D落在直線l上時(shí)的t的值;

②求點(diǎn)M運(yùn)動(dòng)的過程中線段CD長(zhǎng)度的最小值;

(3)在點(diǎn)M運(yùn)動(dòng)的過程中,在直線l上是否存在點(diǎn)P,使得△BDP是等邊三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐

1)問題發(fā)現(xiàn)

如圖1均為等邊三角形,點(diǎn)在同一直線上,連接.請(qǐng)寫出的度數(shù)及線段之間的數(shù)量關(guān)系,并說明理由.

2)類比探究

如圖2,均為等腰直角三角形,,點(diǎn)在同一直線上,邊上的高,連接

填空:①的度數(shù)為____________;

②線段之間的數(shù)量關(guān)系為_______________________________

3)拓展延伸

在(2)的條件下,若,則四邊形的面積為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,有一個(gè)內(nèi)角是直角的三角形是直角三角形,其中直角所在的兩條邊叫直角邊,直角所對(duì)的邊叫斜邊(如圖①所示).?dāng)?shù)學(xué)家還發(fā)現(xiàn):在一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方和等于斜邊長(zhǎng)的平方。即如果一個(gè)直角三角形的兩條直角邊長(zhǎng)度分別是,斜邊長(zhǎng)度是,那么。

1直接填空:如圖①,若a3,b4,則c ;若,,則直角三角形的面積是 ______ 。

2)觀察圖②,其中兩個(gè)相同的直角三角形邊AEEB在一條直線上,請(qǐng)利用幾何圖形的之間的面積關(guān)系,試說明

3)如圖③所示,折疊長(zhǎng)方形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB8BC10,利用上面的結(jié)論求EF的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)BDABBD,EDBD,連接AC、EC.已知AB=2,DE=1BD=8,設(shè)CD=x

1)用含x的代數(shù)式表示AC+CE的長(zhǎng);

2)請(qǐng)問點(diǎn)C滿足什么條件時(shí),AC+CE的值最;

3)根據(jù)(2)中的規(guī)律和結(jié)論,請(qǐng)構(gòu)圖求出代數(shù)式的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案